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SUMMARY 

The s tabi l i ty   of  a plane two-dimensional vortex sheet separating  themal- 
ly  radiating  gases is investigated by the method of normal modes.  The study 
was prompted  by concern fo r   t he  containment  of the  uranium gas  core i n  a coax- 
i a l  j e t  nuclear  rocket. Allowing for  transverse  variation  in the base flow 
temperature and density, the equations  of  continuity, momentum, energy, state,  
nuclear  fission  internal heat generation, and radiat ive  t ransfer   for  an ideal 
grey  gas  are  formulated  for small disturbances and solved  numerically.  Effects 
of heat generation, wave reflections at a plane  of symmetry, radiative non- 
equilibrium i n  the waves, and velocity and density  differences  across  the 
interface are  studied. 

The effect  of base flow  thermal  radiation  across  the  vortex sheet i s  also 
analyzed, by considering a uniformly heat generative, symmetric inner  gas with 
non-uniform base  temperature and a faster moving, semi-infinite  outer  gas. It 
i s  shown that the base flow  temperature  variation has a stabilizing  influence. 
An approximate application  of  this  analysis i s  made t o  a nuclear  rocket  with 
the conclusion tha t  t h e  disturbed  vortex  sheet i s  less unstable because  of the 
radiative transfer . 

INTRODUCTION 

Background 

This  investigation was prompted  by concern fo r   t he  containment  of the 
uranium gas  core i n  a coaxial j e t  nuclear  rocket.  In  particular, we wish t o  
know the  influence  of  radiative  heat  transfer upon the integrity of the  inter- 
face between the  inner  heat  generative  gas and the outer,  faster moving, cool- 
ant  gas. A schematic  of the  rocket chamber i s  sketched in  Figure 1 (see,  for 
example, Putre [30]). 

For t rac tab i l i ty  of  our problem, certain  simplifying assumptions w i l l  be 
required. A t  t h e  outset w e  sha l l  assume t h a t  the  interface  separating  the two 
dissimilar  gases  degenerates t o  a vortex  sheet of infinitesimal  thickness, 
across which there w i l l  be no molecular  diffusion. Further, we shal l  choose 
t o  analyze  only two-dimensional paral le l  flow i n  an x-y plane. The resul ts  and 
conclusions from this   analysis  should c a r q  over t o   t h e  axisymmetric flow i n  
view of the  quali tative agreement existing between results fo r  the two  geome- 
tries as exhibited by G i l l  [71 and Lessen, Fox and Zien [17] i n  the i r  studies 
of jet  and wake instabilities  in  isentropic  gases. Other simplifying assump- 
t ions w i l l  be mentioned as needed i n   t h e  development of  succeeding sections. 

Literature Survey 

Hydrodynamic s tab i l i ty .  - Several  authors have studied the vortex  sheet 
s t ab i l i t y  problem, nearly always in   the  presence of  complete local thermody- 
namic equilibrium  flow. Helmholtz, Rayleigh and Kelvin (see Lamb [14])  inves- 
tigated  the  plane  vortex  sheet  separating  incompressible  inviscid  flows  of 



semi-infinite  extent  and  found  the  sheet  to  be  unstable  to  small  disturbances. 
Landau 1151, Hatanaka [lo], Pai [251 and  Miles [231 extended  this  to  compress- 
ible  flows  with  the  conclusion  that  the  sheet  would  be  neutrally  stable  when 
Iu2-u, I > ( al 2/3 +a2 2/3)3/2 where ( U , a )  refer  to  the  speed  and  isentropic  speed 
of  sound  in  the  base  flow  of  the  two  gases.  The  specific  heat  ratios  of  the 
two  gases  were  assumed  equal.  It  should  be  noted  that  Miles  demonstrated  that 
Landau,  Hatanaka  and  Pai  generated  spurious  eigenvalues  in  addition  to  the 
correct  ones  in  their  approach  to  the  problem.  Miles,  in  using an initial  value 
problem  approach  where  disturbances  were  restricted  to  those  initiated  at  the 
vortex  sheet  and  propagated  outward,  was  able  to  show  the  appropriate  number 
and  stability  character  of  the  eigenvalues  generated  from  the  principal  branch 
of  his  characteristic  equation.  He  demonstrated  that  there  exist  two  principal 
modes  for  subsonic  disturbances,  which  appear  when IU  -U I < (a  +a ) and  three 
principal  modes  for  supersonic  disturbances,  which  appear  when 

I U2-U1 I > (a  +a ) . Only  one  mode  is  unstable  for IU2-U, I < (al  +a2 

while  all  three  modes  are  neutrally  stable  for IU2-U,I > (a,  2/3+a2/3  )3/2 

2 1  1 2  

2/3  2/3  )3/2 
1 2  
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All seven  of  the  above  investigators  considered  the  vortex  sheet  to  be 

separating  semi-infinite  gases.  Other  authors  have  restricted  the  dimension 
of  one  of  the  gases.  For  instance,  Gill  and  Lessen  et  a1  considered  "top-hat" 
type  velocity  profiles  for  compressible  jet  and  wake  type  flows  in  both  two- 
dimensional  planar  and  axisymmetric  cylindrical  geometries.  Gill's  approach 
was  purely  analytical,  thus  requiring  him  to  restrict  his  attention  to  certain 
asymptotic  limits  to  make  the  problem  tractable.  Specifically,  he  considered 
disturbances  along  the  vortex  sheet  with  a  small  length  scale  (short  waves) 
compared  to  the  dimension  of  the  inner  gas.  Obviously,  this  identifies  with 
the  above  case of a  vortex  sheet  separating  semi-infinite  gases  except  when 
Iu2-u1 I > ( al 2'3 +a2 2/3)3/2. In  the  latter  region  Gill  claims  that  there  is  an 
"enhanced  instability"  by  virtue  of  the  ability  of  waves  to  reflect  back  and 
forth  at  one  of  the  resonant  angles  (see  Fejer  and  Miles [61 )with  a  growth 

u -u 
rate  of  the  order  log (aM) , where  M = 1 7 1  , a = a1 = a2, a is  the  dimension- 2 1  

less  wave  number,  and aM is  taken  as  large.  He  notes  that,  for  these  short 
waves,  the  wave  speed is close  to M/2 which  complies  with  Miles'  explicit  result 
provided  for  the  vortex  sheet  in an infinite  domain.  We  must  be careful when 
considering  Gill's  results  since  the  short  wave  limit  would  be  highly  affected 
in  the  presence  of  viscosity,  an  ingredient  neglected  in  his  investigation. 

Lessen  et  a1  restricted  their  attention  to  jets  (or  wakes)  moving  super- 
sonically  relative  to  the  surrounding  gas  and  looked  for  unstable  solutions. 
Their  numerical  results  consisted of plots  of  the  real  (wave  speed)  and  imagi- 
nary  (amplification  factor)  parts  of  the  eigenvalues  versus  a  dimensionless 
wave  number  (disturbance  wave  number  times  inner  gas  half-width)  for  various 
supersonic  inner  jet  Mach  numbers.  Their  paper  provides  evidence  that  the 
vortex  sheet is unstable  to  small  disturbances  at  all  supersonic  speeds  in  the 
presence of a  plane  of  symmetry  for  both  symmetrical  and  anti-symmetrical 
disturbances. 

For  incompressible  flow  Betchov  and  Criminale [2] showed  where  placement 



of a wall  near a shear  layer  has a stabilizing  influence  but  does  not  afford 
stability.  They  note  the  fact  that  for  short  waves  (compared  to  shear  layer 
to  wall  distance)  the  eigenfunctions  diminish  to a small  amplitude  into  the 
free  stream on either  side  of  the  shear  layer  while  for  long  waves  there 
results a buildup  of  pressure  fluctuations  toward  the wall. 

In  each  of  the  above  cases  the  investigators  took  the  base  flow  properties 
of  each  gas  to  be  uniform  with  discontinuities  occurring  only  at  the  interface 
separating  them.  This  assumption  results  in a constant  coefficient  differential 
acoustic  disturbance  equation,  allowing  simple  exponential  solutions.  Early 
investigators  pursued  parallel  flow  stability  problems  wherein  the  base  flow 
properties  varied  across  streamlines  in  some  continuous  manner.  Although  the 
resulting  governing  equations  are  linear  on  the  basis  of  the  small  disturbance 
approach,  they  are  of  variable  coefficient  form  and  only  tractable  in  some 
relatively  simple  cases.  Tollmein [34] considered  the  incompressible  boundary 
layer  while  Lees  and  Lin [16] did  the  same  for  the  compressible  boundary  layer. 
Pai [26] extended  the  method  of  Lees  and  Lin  to a jet  flow  of a single  gas. 
His  supersonic  disturbance  stability  criterion  in  this  case  lends  support  to 
his  vortex  sheet  stability  criterion.  Each of the  above  three  studies  included 
viscosity  in a large  Reynolds  number  expansion  but  did  not  account  for  any 
other  non-equilibrium  mechanism. 

In  recent  years  interest  has  been  shown  in  the  stability  of a disturbed 
vortex  sheet  separating  two  fluids  subject  to  some  form  of  molecular  non- 
equilibrium.  For  instance,  Wang  and  Maslen 1391 investigated  the  stability  of 
a vortex  sheet  separating  two  perfectly  conducting  semi-infinite  compressible 
fluids  in  the  presence  of  uniform,  parallel  magnetic  fields.  They  show  that, 
when  the  ratio  between  AlfVbn  speed  and  sound  speed  is  unity  in  both  fluids, 
the  sheet  is  completely  stable.  Wang [381 also  investigated  the  stability  of 
the  vortex  sheet  separating  two  semi-infinite  compressible  chemically  relaxing 
gases  and  found  that a measure  of  non-equilibrium  in  the  perturbation  problem 
affords  instability  at  all  speeds.  However,  should  the  relaxation  times  be 
particularly  fast  (equilibrium)  or  slow  (frozen)  the  sheet  is  neutrally  stable 
for I u2-u1 I > (al -2/3+a2/3)3/2 where a is  either  the  equilibrium  or  frozen  speed 
of  sound.  We  should  note  that,  in  each of these  two  investigations,  the  non- 
equilibrium  was  assumed  to  occur  in  the  small  disturbance  only  while  the  base 
flows  were  in  complete  equilibrium. 

2 

Thermal  radiation. - In  the  last  decade,  with  the  advent  of  higher  speed 
projectiles  and  re-entry  vehicles  operating  under  high  temperatures, a new 
interest  has  been  generated  in  the  non-equilibrium  phenomenon  of  thermal 
radiation  in  gaseous  flows.  Although  Couette  and  Rayleigh  type  flows  have 
been  solved,  the  mainstream of interest  has  seemingly  been  in  wave  structure 
problems.  In  particular,  investigators  such  as  Zel'dovich [42], Raizer [32], 
Heaslet  and  Baldwin 1111 and  Pearson [281 have  considered  the  steady  flow 
deterministic  problem  of  the  hot  compressed  gas  downstream of a shock  to  be 
radiating  heat  back  upstream  tending  to  smear  the  discontinuity.  The  latter 
two  papers  were  the  culmination  of  numerical  work  wherein  the  non-linear 
effects  of  large  heat  transfer  across  strong  shocks  could  be  accounted  for, 
that  is,  there  was  no  necessity  to  assume  uniform  conditions  upstream  and 
downstream.  The  latter  conditions  were  assumed,  however,  for  relatively  weak 
shocks  and  consequent  small  radiation  in  the  analytical  linearized  treatment 
shown  in  Vincenti  and m g e r  [37]. 

3 



Another  brand of deterministic  wave-type  problem  which  has  received 
considerable  attention  is  that of tne  propagation  of 8 small  disturbance  into 
a uniform  hot  gas.  For  instance,  Baldwin [l], Lick [18] and  Moore [24] each 
attacked  the  initial  value  problem  of a piston  suddenly  set  in  motion  with 
an  infinitesimal  speed,  forcing a small  disturbance to be  propagated  outward 
into a semi-infinite  gas.  Although  each  author  assumed  uniform  properties  in 
the  undisturbed  gas,  affording  exponential  solutions,  they  still  found  it 
necessary  to  make  some  rather  stringent  assumptions  or to attack  the  problem 
numerically.  They  did,  however,  exhibit  the  fact  that  the  acoustic  disturbance 
decays  and  disperses  as  it  propagates  into  the  semi-infinite  medium.  The 
dispersion  is  due  to  the  fact  that  radiation  can  travel  at  the  speed of light, 
thus  spreading  the  disturbance  out  behind  and  ahead of the  wave  center.  The 
decay of the  disturbance  exhibits  the  relaxation  character  of  the  radiative 
non-equilibrium  phenomenon.  These  authors  also  discussed  the  appearance  in 
their  problem  of  the  transparent  and  opaque  limits,  near  and  far  from  the 
piston  respectively,  pointing  out  that  the  acoustic  wave  propagates  at  the 
isentropic  speed of sound  in  these  limits  and  at  the  isothermal  speed of sound 
in  the  transition  region  between  these  limits.  For a fairly  opaque  gas, then, 
the  transparent  region  close  to  the  piston  may  be  considered  as a boundary 
layer, a point  which  will  have  importance  to a part  of  the  present  study. 

Vincenti  and  Baldwin [ 3 6 ]  made  observations  of  similar  nature  to  those 
of  the  above  authors  in  their  study  of  the  response of the  semi-infinite  hot 
gas  to  small  sinusoidal  oscillations  in  both  position  and  temperature of the 
piston.  In  this  case,  however,  the  frequency  of  the  propagating  disturbance 
is  established  by  that of the  oscillating  piston.  However,  depending  upon  the 
impedance of the  radiating  gas,  the  disturbance  undergoes  decay  and  phase  shift 
as it  propagates  deeper  into  the  semi-infinite  domain.  An  important  accom- 
plishment  of  these  authors  is  their  exhibition  of  two  types  of  waves  making  up 
the  disturbance, a modified  classical  wave  and a radiation-induced  wave,  the 
latter  being a peculiarity  of  the  higher  order  of  the  governing  equations.  The 
intensity  of  each  of  these  waves  depends  upon  the  mechanical  and  thermal 
boundary  conditions  in  the  problem,  although  the  radiation-induced  wave  will 
vanish  in  the  limits  of a completely  opaque,  transparent  or  cold  gas.  In  such 
limits  the  classical  wave  propagates  at  the  isentropic  speed  of  sound  and 
becomes  purely a finction  of  mechanical  boundary  conditions.  In  the  very  hot 
limit,  both  waves  may  exist  to an intensity  which  depends  upon  the  nature of 
the  boundary  conditions,  the  modified  classical  wave  propagating  at  the  iso- 
thermal  speed  of  sound  and  the  radiation-induced  wave  propagating  at  speeds 
ranging  from  zero to infinity  depending  upon  the  opacity  of  the  gas  and  the 
induced  frequency of the  disturbance. 

Long  and  Vincenti [21] investigated,  by  numerical  methods,  the  pressure 
response  in a finite,  uniformly  hot  gas  situated  between  fixed  walls  with  one 
wall  having a sinusoidally  oscillating  temperature of small amplitude.  Their 
results  exhibit  the  resonance  character of their  finite  chamber  in  affording 
a peaked  response to the  standing  modified  classical  wave.  However,  because 
of  the  ability of radiation  to  travel  at  all  speeds,  the  off-resonance  response 
to  the  modified  classical  wave  is  not  zero  but  rather  smoothly  varying  about 
some  lower  amplitude  while  the  response  due  solely to the  radiation-induced 
wave  is  quite  uniform  for  the  hot  gas. 

4 
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In  nearly all  of the above  mentioned  deterministic  problems  involving 
thermal radiation,  and  particularly so in  the non-numerical  analyBes, it 
was  found  necessary to apply  restrictions  such as 

(a) grey  gas , 
(b) differential  approximation to  the kernel of  the radiation 

integral  in a one-dimensional  problem, 

(c ) opaque  or  transparent  limits on absorptivity, 

(d) small perturbations to a  uniform  base "flow". 

Thus, it should  not be surprising  that  some  such  simplifying  assumptions  will 
be necessary when combining the difficult problems of  thermal radiation and 
stability.  Furthermore,  as  is the practice of most  authors, we shall assume 
that, while radiation is being considered,  other  forms of relaxation,  such  as 
vibration and  chemistry,  will  be  ignored. 

BASIC EQUATIONS 

Equations of Motion 

We  shall  here  derive and  set forth the equations  governing  a small distur- 
bance potential existing in a  two-dimensional  radiating,  heat  generative  gas. 
For simplicity, we shall  assume  applicability of  the equation of state  of an 
ideal gas. We  shall allow for  variation  in  base  flow temperature and density 
in the transverse direction  (y-dir. ) only. The resulting equations  will  be 
specialized when adapted to particular  eigenvalue  problems  appearing  in  sub- 
sequent  chapters. 

The basic  governing  gasdynamic  equations  include  continuity,  momentum, 
energy and state 

a p  + -( pu) + "(pv) = 0 a a 
at  ax aY 
- 

p = pRT ( 5 )  



asi 
axi where - represents  the  divergence  of  radiant  heat  flux  and Q represents 

volumetric  heat  generation  rate  in  the  gas.  We  shall  consider  the  applica- 
bility of linear  superposition  of  small  disturbances  upon a suitable  base 
flow  such  that p = 5 + p',  etc.  We  shall  also  make  the  important  assumption 
of a steady,  uniform,  parallel  base  flow  in a field  of  uniform  pressure p' and 
heat  generation"$.  With  the  parallel  flow  assumption  we  are  at  liberty to 
choose any particular  x-direction  speed U and  adjust  all  perturbation  equa- 
tions  by  applying  the  simple  Galilean  transformation ($- + Us] in  place  of 
a for a stationary  fluid.  Thus,  for  convenience,  we  shall  temporarily  take 

a 

- 
at - u = 0 in  the  base  flow  and  superimpose  later a non-zero  value  as  needed. 
Allowing  for  the  transverse  variation of and F ,  linearization  yields  the 
small  perturbation  counterparts  of  eqns. ( 1 ) - ( 5 )  as 

a a -  
at + "(FU') ax + +VI) = 0 - 

d'l, x=-- a q; + &' 
- aT' + v' -) dY - at PC (- axi P at 

p l = p ' + -  T' 

We  may  define a disturbance  potential $ according to 

in  order  to  satisfy  the  first  momentum  equation.  Substituting  these  into  the 
second  momentum  equation  yields 

If we  differentiate  state  eqn. (10) with  respect to t and  substitute  from 
continuity  eqn. (6) in  terms  of 4 while  maintaining  that F is  variable  in y 
only,  we  get 

6 



Substi tuting t h i s  and state eqn. (10)  into  energy eqn. (9) i n  terms of $I gives 
us 

and 
P '  
- 

We s h a l l  assume tha t   t he re  are some fixed  characterist ic  temperature To 
density po such that =: Tof(y)  and, by v i r tue  of t h e  ideal gas l a w ,  
p,/f(y) where f ( y )  i s  a base  flow  function t o  be specif ied later. We shall 

8 l S O  aef ine a reference  value  of t h e  isentropic  speed  of sound as 

a = 47 
where y i s  the  ra t io   of   specif ic   heats .   Subst i tut ing our definit ions  into  eqns.  
(13) and (14)  now gives us 

Heat Generation 

We need rate   equat ions  for  q' and Q'. For t h e   l a t t e r  we need t o  make 
considerations  with  respect t o  the  neutron  physics  of the problem. The loca l  
heat generat ion  ra te   in  a reactor  core is given by 

Q = NofErp 

where N i s  t h e   r a t i o   o f  Avagadro's number t o  t h e  atomic number of  the  gas, of 
i s  the  f iss ion  cross-sect ion,  E i s  the  energy  released  per  f ission  that  goes 
into  heat  generation, I' i s  the  local  neutron  f lux and p i s  the gas  density. 
As shown by Glasstone and Edlund [g ] ,  energy released  per   f iss ion  for   the 
great  madority  of  fission modes is  approximately  distributed as follows: 

I 
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Kinetic  energy  of  fission  fragments 162 Mev 

Beta decay  energy 5 

Gamma decay  energy 5 

Neutrino  energy 11 

Energy of fast neutrons 6 

Instantaneous gamma-ray energy 6 - 
Total  f ission  energy 195 Mev 

N and uf are   constants   for  a given  core gas. E i s  some fraction  of  the 
t o t a l   f i s s i o n  energy.  Ordinarily,   neutrinos  are  lost  from the  system  while 
the  energy  associated with the   f i s s ion  fragments  and  instantaneous gamma-rays 
appears  almost  immediately as heat ,  and t h e  energy  associated with beta  and 
gamma decay  appears as heat over a much longer  period of time. The disposi t ion 
of t h e  neutron  energy  depends upon whether the  reactor  i s  fast or  thermal. 
Since a fast gas core  reactor would be d i f f i c u l t   t o   c o n t r o l ,  we should think 
more i n  terms of a thermal reactor  where more than 90% of  the  neutrons must be 
thermalized  before  being  absorbed  for further fissions.   This i s  accomplished 
by l e t t i n g   t h e  fast neutrons  diffuse  outside the core  into a moderator  (which 
may also  be a r e f l ec to r )   o f   l i gh t  atoms.  There, e l a s t i c   s ca t t e r ing  slows the 
neutrons t o  about O.25ev whereupon they  diffuse back into  the  core .  "his 
slowing down process takes considerable time, perhaps in  excess  of one milli- 
second,  according t o  Podney and  Smith [29]. Thus, i n  a thermal  reactor, a power 
excursion  (excursion  in r 1 is r e l a t ive ly  slow. 

The concern for  characterist ic  t imes  expressed above is important when 
considering  our  acoustic  perturbation problem  which has a characterist ic  t ime 
dependent upon the  speed  of sound i n  t h e  gas. This time i s  short  and therefore  
perturbations  in  heat  generation can  be  taken as quite  independent  of  the  long 
l i f e  neutron  flux  excursions. Thus, w e  may view heat generation  perturbation 
Q' as varying  l inearly with local   densi ty   per turbat ion p '  with E t aken   t o  be 
approximately 168 MeV, the sum of f i ss ion  fragment kinetic  energy and instan- 
taneous gamma-ray energy. 

Therefore 

If we d i f f e ren t i a t e  eqn. (19) wi th  r e s p e c t   t o  t and subs t i tu te  eqn. (6)  i n  terms 
of I$ we have 

x = - NufErp [-- (&) + - (*)I a' aL 
ax aY a t  0 2 f  2 f  
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Thermal  Radiation 

We  now  need a rate  equation  for  thermal  radiation.  Assuming  local  thermo- 
dynamic  equilibrium  in  the  gas,  this may be  expressed  in  terms of intensity I,, 
as 

where 1 is  the  direction  cosine  of  the  ith  coordinate, a,, is a volumetric 
absorptxon  coefficient, B,, is  the  Planck  function  and  the  subscript v indicates 
frequency  dependence.  The  frequency  dependence  may  be  dropped  by  making  the 
assumption of a grey gas', which  implies  that  the  absorption  coefficient  is 
frequency  independent.  Rather  than  attempt  to  solve  the  multi-dimensional 
radiation  transfer  equation  in  explicit  form,*  it may be  satisfactory  only to 
satisfy  certain  moments of  the  equation.  This  was  done  formally  by  Cheng [3]  
where  he  substituted  for I an infinite  series of spherical  harmonics.  Subse- 
quent  integration  yielded  an  infinite  set  of  equations  equivalent  to  the  origin- 
al  transfer  equation.  Truncation  to a first  approximation  and  certain  simplifi- 
cation  led  to  the  set  of  equations 

i 

where a. is the grey  gas  absorption  coefficient, Io is  the  zeroth  moment of 
intensity,  the  space-integrated  intensity  defined as 

and  qi  is  the  directional  dependent  first  moment  of  intensity,  the  radiation 
heat  flux  vector  defined  as 

* It  is  to  be  understood  that a formal  solution  of  eqn. (17) can  be  obtained 
for  the  one-dimensional  case  in  terms of integrals. A purely  differential 
equation  can  be  derived from this  by  approximating  the  exponential-integral 
kernel E2 by a purely  exponential  fbnction. A recent  paper  by  Gillis,  Cogley 
and  Vincenti [8] propose a non-grey  gas  substitute  kernel  whereby  they  claim 
that  existing  grey-gas  solutions  need  only  be  reinterpreted  in  terms of the 
non-grey  gas  case. 
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Vincenti and Kruger [371 have shown that  eqns. (22) and (23) can  be  derived by 
assuming that   radiat ion  pressure and energy  density are re la ted  as i f  t h e  
radiat ion were isotropic;   th is   const i tutes   the  so-cal led Milne-Eddington 
approximation. 

Elimination of Io from eqns. (22) and (23) w i l l  l e a d   t o  a d i f f e r e n t i a l  
equation  for  the  heat  flux  vector  expressed as 

I J 

where we have replaced  the  grey  gas  absorption  coefficient by the   rec iproca l  
of the  photon mean free  path X ,  defined as the   d i s tance   in  which a beam of 
radiant  f lux  diminishes  to l / e  of i t s  original  value.  

Eqn. (26) has some in te res t ing   fea tures  worth  discussing at th i s   po in t .  
Note first that ,  i f   t h e  Planck  function aT4/n is  uniform,  an  appropriate  solu- 
t i o n  i s  q i  = 0. Next, consider a medium of  high  absorptivity  (fairly  opaque).  
This means tha t  photons  emitted at one point are absorbed at another  point 
close by. I n  th i s   case  we  may drop  the first term  of  eqn. (26) and note t h a t  
the  transfer  of  heat now depends upon the  gradient of T4,  requiring a rapid and 
continuous  variation i n  temperature  of  the medium t o  accomplish  substantial 
heat   t ransfer .  On the  other  hand, a medium of small abso rp t iv i ty   ( f a i r ly  

being  reabsorbed.  This  restriction  allows  us t o  drop the third  term  of eqn. 
(26), indicating that the  medium temperature need not  be  rapidly and continu- 
ously  varying t o  admit passage  of  substantial heat t ransfer .  It i s  a l so  use- 
ful t o   no te   t ha t  i n  each  of t he  above restr ic ted  ranges,   the   heat   t ransfer  
depends upon the  photon mean free  path i n  such a way as t o  be less   than  a 
maximum f o r  a given  gradient  of  the  Planck  function. A maximum r a t e  of  heat 
t ransfer  (maximum non-equilibrium) would therefore  occur  for a given  Planck 
function  gradient when A i s  of an intermediate  value and a l l  three  terms  of 
eqn. (26) are i n  balance. The above features  of  the  radiation  heat  f lux w i l l  
carry  over   to  i t s  small disturbance  counterpart and to   the   per turba t ion  
potential  equation. 

I transparent)  implies  that   photons  are  free  to  travel  large  distances  before 

Now, if we l inear ize  each  of  eqns. (22),  (23) and (26) f o r  the sake  of 
our small disturbance  theory we shall have 

* I f  t h e  integrat ion i s  performed  over  each  half-space we  may ident i fy  one- 
sided  heat  fluxes qf and q l  where these   a re   the  components perpendicular 
to  the  plane  separating  the  respective  half-spaces.  The net  heat  flux is  
then  re la ted  to   these by q i  = qt - q?. The integrated  intensity  defined 
by eqn. (24)  i s  then related  according  to  Io = 2(q! + 9;). 
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Acoustic  Perturbation  Equation 

We may  now combine eqns. (161, (171, (20) and (29)  into a s i n g l e   f i f t h  
order  differential  equation  governing  our  disturbance  potential. First, take 
the  divergence of  eqn. (29) and d i f f e ren t i a t e  it wi th   respec t   to  t .  Then, 
take  the  Laplacian of eqn. (16), d i f f e ren t i a t e  eqn. (17) with  respect t o  t 
and subst i tute   the  resul ts   a long  with eqn. (20)   into  the  different ia ted form 
of eqn. (29) t o   a r r i v e  at 

( T + - - - ) { - [ - - - f T - $ f & - y ( ~ + - )  a2   a2  3 a 1 a2   a2  a a2  a 1 
ax ay2 x 2 a t  a2 at2 ax ax ay2 

where we have defined  radiation and heat  generation  parameters  according t o  

16 ( y-1) aTo 4 
K =  

Yta 

It w i l l  a l s o  be useful  to  get   expressions  for  the  integrated  intensity 
1; and the  net   heat   f lux q ;  i n  terms of the  disturbance  potential .  We may 
accomplish the  first of these by d i f fe ren t ia t ing  eqn. (17) with  respect t o  t 
and subst i tut ing it along  with  eqns. (16) and (20) i n to  eqn. (271, a f t e r  
d i f fe ren t ia t ing   the  lat ter with  respect   to  t. The r e s u l t  is 



2 aK 4 2 a  a2  a2 4 - f(T + -11 3 
(31) 

+-f[ - 
a2 at2 ax  aY 

The  heat flux expression  may  now  be  derived  by  simply  taking  the  gradient of 
eqn. (31) and  substituting  it  into  eqn. (28) to get 

2 a2 a2 a K 4 y a  
(32) 

+ -f A [ 2 at2 - f(T + - 4 1  $1 
a ax  aY2 

ONE-DIMEIPSIONAL  PROBLEM 

Nature  of  Problem 

There  are  several  features of  our  stability  problem  which  can  affect  the 
results,  such  as  geometry  (including  location  and  type  of  boundary  conditions), 
presence  of  mechanical  or  thermal  non-equilibrium  in  the  base  flow  and/or 
non-equilibrium  effects  in  the  perturbed  flow. Two of  these  effects  which  are 
new  to  the  question  of  stability  are  the  thermal  radiation  and  the  heat 
generation.  Since  it  is  not our objective  to  seek  solely  an  answer to that 
specific  problem  which  prompted  this  study,  but  rather  to  gain  some  f'undament- 
a1 understanding on a more  general  level,  it will prove  instructive to attack 
simple  problems  first  in  order  to  more  or  less  isolate  one  or  two  of  the  above 
discussed  effects  at a time;  thus, our interest  in a simple  one-dimensional 
problem.  In  this  way  we  shall  be  able  to  show  that  the  dissipative  effect of 
thermal  radiation  upon  propagating  disturbances  discussed  in  papers  reviewed 
in  the  INTRODUCTION  will  carry  over  in  terms  of an eigenvalue  problem. 

Governing  Equations 

Our eigenvalue  problem will be  characterized  by a length yo which  will  be 
identified  later.  Non-dimensionalizing  with  respect  to  this  length  and  assum- 
ing a uniform  base  "flow"  the  one-dimensional  counterpart of eqns. (3O), (ll), 
(121, (31) and (32) become 
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x a2 a t 2  a n  

w2 2 2 

a2 a t 2  an 
+ 509 - 9 1  

(37 1 

where we have defined n = y/yo and s e t  f = 1. 

Signaling  Equation Concept 

Before  picking a par t icu lar  geometry and associated boundary conditions 
f o r  a one-dimensional  eigenvalue  problem, it might be in t e re s t ing   t o   i nves t i -  
gate  the  governing  differential   equation  for  "stabil i ty"  via a signaling 
equation  idea  proposed by  Whitham [40]. Such a signaling  equation would take 
the  form 

13 



where, i f  m = n - 1 and P 0,  then c1 > al > c2 > * . - * * >  a > c w i l l  

indicate   "s tabi l i ty" ,  that i s  damped propagating waves. 
n-1 n 

We note that our governing  eqn. (33) contains  three  independent  para- 
meters, namely yo/X, K and G. If we can  find limits where only one  parameter 
appears at a time, we may apply Whitham's idea. In   t he  limit of a completely 
cold (K=O) and non-heat generative (E-0) gas a suf f ic ien t   so lu t ion   to  eqn. (33) 
i s  provided by solving the isentropic  acoustic  equation.*  In this 'limit, then, 
eqn. (33) may be wri t ten ./ 

Obviously, i n   t h i s  simple  case, a > -a indicat ing that we have r igh t  and le f t -  
running  standing (undamped) waves with  signaling  speeds  of f a. 

I n  the non-heat generative,   infinitely  hot (K * 0 gas limit (Stokes' 
flow) eqn. (33)  reduces t o  an isothermal wave equation** 

which is "stable", giving  r ight  and left-running  standing waves with Signal- 

ing  speeds  of f a/fi  . 
Cogley [ 41 has already  applied Whitham's i d e a   t o  eqn.  (32 ) f o r  G=O fo r  

short  time (fairly transparent gas ) and long t ime  ( fa i r ly  opaque gas ) when 
considering waves propagating  into a semi-infinite gas. We s h a l l  do the  same 
fo r  waves of both families.   In Whitham's form, the   fa i r ly   t ransparent   res t r ic -  
tion  allows  reduction of eqn. ( 3 3 )   t o  

+ 9% + --)(- a a a  - "->+ a a  = 0 

G O  G O  

a n  a t  a n  

* It can  be shown that the  isentropic  acoustic  equation is derivable  direct-  
l y  by omitting thermal radiat ion and heat generation from the   o r ig ina l  
perturbation  eqns. (6)-(10). 

** As Vincenti and Baldwin have indicated,  t he  modified  classical  wave and 
the  radiation-induced wave are possible   in   the  hot  limit. Which one 
w i l l  ex i s t  and abide by eqn. (40)  depends upon the  boundary conditions. 
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where 

while the fairly  opaque  restriction  yields 

where 

Since yaK/A and 3y /aAK  are  positive we may  conclude  that  radiative  non- 
equilibrium  has a 8amping  effect  upon  both  right  and  left-running  propagating 
waves,  implying a favorable  influence upon stability. 

2 

If  we now set K = 0 while G # 0, eqn. (33) may be reduced to 

(2 + ")(L a 3  i 0 -)(- a a  - --)($I a a  
at yo an at an at yo an 

where 

Thus, the density  dependent  heat  generation  should  have a growth  effect  upon 
propagating  waves,  implying  an  adverse  influence  upon  stability. 
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Single,  Heat  Generative,  Confined  Gas 

Eigenvalue  problem. - For utmost  simplicity,  we  shall  establish  the 
behavior of a single,  heat  generative,  radiating  gas  with  uniform  properties" 
by  subjecting  it  to  small  disturbances  which  can  be  treated  by  the  theory of 
normal  modes.  We may establish a characteristic  modal  frequency  for  this  one- 
dimensional  problem  by  fixing  the  dimension  of  the  gas,  leaving  it  confined 
between  walls  at n = 0 and n = 1. Consistent  with  the  theory  of  normal  modes 
we may  assume a solution  in  time  of  the  form 

where w = w + iw  is the  complex  frequency  of  the  disturbance,  the  real 
part  being  wave  speed  divfded  by a length  and  the  imaginary  part  being an 
amplification  factor. For wi > 0 the  disturbance  is  exponentially  growing 
(unstable)  while  for  wi 0 it  is  exponentially  decaying  (stable) , in  which 
case  we may call  its  magnitude a damping  factor. 

r i 

Substituting  eqn. (44 )  into  eqns. (33)-(37) gives  us 

(45 1 

* We  are  assuming  that  the  uniform  base  heat  generation  is  removed  in  some 
uniform,  fictitious  manner.  Obviously,  in  the  gas  rocket  problem,  the 
generated  energy  is  radiated  to  the  coolant  gas  which  convects  it down- 
stream. 
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where we have defined  the  dimensionless  frequency 

and l e t   p ' ( n ) ,  vl(n), I'(n) and q ' (n)   represent   the  rpdirect ion mode shapes  of 
these disturbance  qusntyties. 

We note t h a t  eqn. (45)  i s  of  fourth  order  in  space,  requiring two 
boundary conditions  (one  mechanical and one thermal)  to  be  specified at each 
w a l l .  If we take the walls t o  be immovable and per fec t ly   re f lec t ing   (or  
ad iaba t ic )   the  boundary conditions become v' (0 )  = v' (1) = q'  (0)  = q'(1) = 
0. The first two of   these ,   in  view of eqn. (47 ) ,  require 

where the  primes on 4 w i l l  hereaf ter   indicate   different ia t ion w i t h  r e spec t   t o  
n. Substi tuting eqn. (51) i n t o  eqn. (49) will allow our thermal boundary 
conditions t o  be expressed as 

Since  eqns. (451, (51) and (52)   are  homogeneous we have the  makings of an  eigen- 
value problem. 

A formal  solution  of eqn. (45) i s  of t he  form  eicn. Defining 

i y  K 
m = 1 + O  G - (1 + -1 K 

AW 
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and  substituting  into  eqn. (45) will  yield  the  characteristic  equation 

c 4 - v c 2 + v = o  (54) 

Since  this  is  bi-quadratic,  we  have  only  two  distinct  values  of c; call  them 

The  general  solution  of  eqn. (45) is  then 

~(11) = Aeiarl + Be + Ce -iarl ibrl + De-ibn (56) 

Substitution  of  eqn. (56) into  eqns. (51) and (52) and  successive  elimination 
of the  coefficients  will  give  us  the  eigenvalue  equation 

sin a sin b = 0 (57) 

which  has  non-trivial  zeroes  when 

a or b = nm where n = 1,2,3,-***. (58) 

It  is  interesting  to  note  that our solution  contains  both  waveforms,  the 
modified  classical  wave  associated  with  and  the  radiation-induced  wave 
associated  with b. 

In  this  very  simple  case  it  is  only  necessary  to  substitute  eqns. (58) 
and (53) into  eqn. (55) and  invert  to  find  the  complex  frequency.  This  pro- 
cedure  yields a cubic  in w'. 
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If  we  define 

- 
6 = -  w YOG a = -  $ =  (Y-1 )K 

nn  nn X 
6 Y o  6(& + -1 

J?Yo  na X 

substitution  into  eqn. ( 5 9 )  will  yield 

Discussion. - One  of  the  three  roots to eqn. (61) yields  zero  frequency 
and a damped  disturbance  for  all y ,  a and B. Because  the  other  two  roots 
yield  identical  amplification  factors  6i  with  frequencies 6 of equal  magnitude 
but  of  opposite  sign,  it  will  be  considered  sufficient  to  dlsplay  results  for 
only  the  positive  frequency  root. 

T 

Neutral  stability  is  ascertained  from  eqn. (61) by  setting  61 = 0 and 
satisfying  real  and  imaginary  parts.  For  the  positive  frequency  root  this 
occurs  when 6, = 1 and a / $  = 1. This  neutral  curve  is  plotted  in  Figure 2 in 
terms  of a relation  between  the  parameters yo/X, K and G. When a/B # 1, the 
positive  frequency  disturbance  either  grows  or  decays  in  time.  This  behavior 
is  exhibited  in  Figure 3 for y = 1.4. 

Most  of  the  interesting  features of Figure 3 are  associated  with  ranges 
of B. Large B corresponds  to  large K, a very  hot  gas.  Small 6, on  the  other 
hand, ma correspond  to  small K (cool  gas) or, alternatively,  to  large or 
small do/nnX (low  frequency,  opaque  gas  or  high  frequency,  transparent gas). 

It  should be clear  that,  when B = 0 (very  cold  gas  or  zero  or  infinite 
absorptivity  or  frequency),  the  disturbance  will  travel  as a standing  wave 
at  the  isentropic  speed of sound.  On  the  other  hand,  when $ + a  (infinite 
temperature),  the  disturbance  will  again  travel  as a standing  wave  but  at  the 
isothermal  speed of sound.  The  greatest  degree  of  non-equilibrium  behavior 
(largest  amplification  or  damping)  will  occur  at  intermediate B. 

Certainly,  we  picked a convenient  example  which  resulted  in a very 
simple  eigenvalue  equation.  Other  boundary  conditions  on  the  walls  could  have 
been  chosen,  such as symmetry  in VI or  perhaps  zero  perturbation  in  wall  tem- 
perature.  The  variations  are  numerous  and  the  resulting  eigenvalue  equations 
would  often  have  to  be  solved  numerically  for w without  the  simplicity  of 
eqns. (58) and (61). 

We  shall  discuss  in  the  next  chapter  how,  in  certain  limits of  the  radi- 
ation  parameters,  the full non-equilibrium  governing  differential  equation 
reduces to lower  order  with a consequent  reduction  in  the  available  number  of 
boundary  conditions.  For  certain small values  of  these  parameters  there  will 
be  possible,  then, a small perturbation  of  the  equilibrium  acoustic  theory to 
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include a small  measure  of  non-equilibrium.  Since  this  perturbation  is 
regular,  it  should a lso  be  possible to accomplish  it  by formal expansion of 
the  solution.  In  the  present  case,  we may formally  expand  eqn. (61) for a 
cool  gas  with  small  heat  generation. To second  degree  the  solution  for  the 
positive  frequency  root  is 

6i 
- a-B 
" 

2 

Two Immiscible  Gases 

Analysis. - Since  we  are  truly  interested  in a problem  which  contains  two 
adjacent  gases of a different  nature,  it  might  be  instructive  to  extend our 
one-dimensional  problem to include  two  immiscible  stagnant  gases  with  different 
radiation  absorption  capability.  Although  we  are  at  present  pursuing  study  of 
a disturbance  mode  which  is of a very different  nature  than  that  which 
characterizes a vortex  sheet  problem,  nevertheless,  the  new  version of the 
one-dimensional  problem  will  afford us some  further  understanding  of  the  radi- 
ation  phenomenon  and  some  knowledge of  how  to  apply  appropriate  boundary 
conditions  across  the  interface  separating  the  two  gases. 

For the  sake  of  clarity,  substitute  the  definitions of eqns. (53) into 
eqns. (45)-(49) and  rewrite  the  latter  here. 
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The properties  in  each  of  these,  of  course, will assume uniform  values  peculiar 
t o   t h e  gas i n  which it is being  applied. 

Eqn. (63) has a general  solution of t h e  form 

Q = A s i n  an + B cos an + C s i n  bn + D cos b n  (68 1 

analogous t o  eqn. (56) where a and b are given by eqn. (55). If we r e s t r i c t  
the  "inner" gas (gas 1) t o  0 5 n 5 n1 and the  outer" gas ( g a s   2 )   t o  nl 2 n 1 
and requi re   the  same  immovable and r e f l ec t ing  walls a t  rl = 0 and n = 1, the 
boundary conditions  of  eqns. (51)  and (52) s t i l l  apply.  Application  of these 
w i l l  reduce eqn. (68 ) t o  

I t  

for   the  inner   gas  and t o  

for   the   ou ter  gas. 

We have l e f t  four unknown constants. Thus, w e  must apply  four boundary 
conditions (two  mechanical and two thermal) at the   in te r face  between the  gases. 
The mechanical  conditions would amount t o  matching  pressure and velocity.  From 
eqns. (64)  and (65) these may be  expressed i n  terms of  the  potential   function 
as F 

where we shall,  f o r  t he  sake of s implici ty ,  limit our   analysis   to   the  case 
where the  gases have equal  specific heat r a t i o s  and sound speeds. Th i s  allows 
ta t o  be common t o  both gases. 

The thermal  conditions  require  matching  integrated  intensity and heat 
f lux  across   the  t ransparent   interface between the  gases. "he first of  these 
amounts t o  a conservation  of  photons  while  the  second  conserves  energy. From 
eqns. (66) and (67) these  conditions may be  expressed as 
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Substitution of eqns. (69) and (70) into eqns. (71)-(74) will result  in 
four  equations  homogeneous  in Bl, Dl, % and D2. Setting the coefficient 
determinant of these equal to zero constitutes the eigenvalue  equation.  In 
terms of present  nomenclature this determinant may be written in the form 

where  we  are  setting 

a = cos  alnl 11 a = cos  blnl 12 

a = - cos a2(1-r11)  a14 = - cos be (1-rll 
13 ., 

a = a sin  alnl 21 1 a = b  sinbrl 22 1 1 1  

a23 = a2  sin  a2(l-nl) = b 2 sin b2(l-q1) 

- x2 [m2a2 2 - (m2 + y-1 )W2 ]COS a2 (I-TI~ 1 
a33 A1 

-"  

I2 
a34 - - - - [m2b2 2 - (9 + y-1 )w2]cos b2(1-r11) 

22 



a44 = (r) A2 b [m b 2 - (m,+y -1) E2]sin  b2(1-nl) 
1 2 2 2  

The  roots  of  such  an  eigenvalue  equation  can  be  found  by  Muller's  numerical 
relaxation  method  (see , for  instance , Wilkinson [411) . 

Limitation  upon  radiation  parameter. - It  is  extremely  important to 
have  compatible  perturbed  and  base  flows. For this  reason  we  must  consider 
any  restrictions-imposed  upon  the  base  "flow"  by  the  assumption  of  uniformity 
of properties  in  each  gas.  Complete  uniformity of temperature  in a gas  requires 
that  either  it  has  zero  absorptivity,  in  which  case  heat  can  be  transferred 
across  it  without  interference  from  the  gas,  or  it  is  in  complete  equilibrium 
and  not  subject  to  heat  transfer.  The  former  case  is  not  very  interesting  at 
present  because  5t  yields  only  isentropic  behavior  in  the  perturbation  problem. 
The  latter  would  require  no  temperature  slip  at  the  interface  in  the  base  flow; 
otherwise  there  would  have  to  be  some  temperature  gradient  in  the  gases  on 
either  side  of  the  interface  to  be  in  accord  with  our  analysis  of  eqn. (26). 
Thus,  adhering  strictly  to  the  uniform  temperature  requirement  forces  us to 
consider  only K1 = Q for  the  time  being. A problem  involving  base  flow  heat 
transfer  will  be  considered  in a later  chapter. 

Results. - In  pursuing a solution  to  the  eigenvalue  problem  described  in 
eqn.  shall  choose  to  neglect  heat  generation  since , as  will  subsequent- 
ly be  shown,  its  parameter  takes  on  rather small values in any  practical 
problem  and  thus  has small effect  upon  the  question of stability.  Having 
assumed  that  the  gases  have  equal  specific  heat  ratios  and  sound  speeds  and 
established  that I(1 = Q, eqns. (53), (55) and (75) yield  the  fact  that  we  have 
left  only  five  free  parameters,  namely y ,  yo/Al, A 2 / A l ,  n1 and K. If we  wish 
to  relate  the  present  problem  to  the  single-gas  problem*  analyzed  earlier  in 
this  chapter  we  may  formulate a combination  of  these  parameters to yield  one 
of  the  form of f3 in  eqn. (60). Thus,  we  may  now  consider our free  parameters 
to be Y ,  B y  A2/A1, '11 and K. 

* By setting  ml/m2 = al/a2 = bl/b2 = 1 it  can  be  shown  that  eqn. (75 ) reduces 
from  the  two-gas  problem  to  the  one-gas  problem of eqn. (57 ). 
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Figure 4 shows a comparison  of  frequency  and  damping of the  fundamental 
acoustic  mode  for  different  values of X * / X l ,  the ;X2/X1 = 1 case  being  taken 
as  the a/B = 0 result  from  Figure 3 .  This  figure  shows  clearly  that a maximum 
of damping  (maximum  non-equilibrium)  occurs  for a given  value of K when  there 
exists  an  intermediate  value of yo/X such  that  there  remains a balance  between 
the  transparent  and  opaque  operbtors  upon  the  wave  operator  on  the  left of 
eqn. (33) .  Considering  some  deviation  from  this  intermediate  value of yo/A in 
one  of  our  two  gases,  either  toward  the  transparent  limit  or  toward  the  opaque 
limit,  will  reduce  the  non-equilibrium  effect.  These  observations  agree  with 
those  made  with  regard  to  eqn. (26) in  the  last  chapter. 

PLANE VORTEX SHEET IN INFINITE DOMAIN 

Problem  Description 

We  shall  begin  consideration of the  question  of  stability  of a vortex 
sheet  separating  two  thermally  radiating  gases. For the  present  we  shall 
restrict  attention  to  the  problem of uniform  base  flow  properties  and  zero 
internal  heat  generation.  We  saw  in  the  last  chapter  where,  if  the  gases  are 
absorbent  and  we  assume  equal  specific  heat  ratios  and  sound  speeds,  we  must 
adhere  to  the  condition of K1 = K2. No such  restriction  need  be  applied to 
the  x-direction  speeds  of  the  two  gases,  however,  since  we are assuming  that 
our  gases  are  completely  inviscid.  In  fact,  it  is  exactly  the  existence of 
this  velocity  slip  which  produces a new  disturbance  mode  in  the  perturbation 
problem  with a characteristic  frequency  which  orders  itself  to  this  speed 
difference.  In  the  limit  of  diminishing  velocity  slip  this  mode  vanishes 
(zero  frequency)  in a manner  described  in  Lamb 1141 . 

To avoid  the  complication  of  additional  lengths  we  shall,  for  the  present, 
consider  the  plane  vortex  sheet  to  be  separating  semi-infinite  gases.  In  the 
isentropic  limit,  then,  our  problem  will  reduce  to  that  considered  by  Pai  and 
Miles. A schematic  sketch of the  problem  we  have  just  described  is  shown  in 
Figure 5 .  

Governing  Equations 

By  taking  the  Galilean  transformation  a/at = a/at + U a/ax  we  may  super- 
impose a uniform  speed U upon  either  gas  in our problem.  Doing  this  and  taking 
f = 1 and G = 0 in  eqns. (30), (ll), (12), (161,  (171, (31) and (32) yields 
the  equations  governing  the  present  problem. 
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2 2 2 (83) 
+"[ a K  x 2 ( - + u - ) + - % - q }  a t  a a 

a ax ax ay3 

Rote tha t  t he  group  of  terms in   the  square  bracket   to  the l e f t  of  eqn. ( 7 6 )  
consti tutes  the  Prandtl-Glauert   operator.  The group of  terms i n  the  square 
bracket t o   t h e  r igh t  cons t i tu tes  a Prandtl-Glauert  operator wi th  an isothermal 
speed of sound, hereafter referred t o  as an isothermal  Prandtl-Glauert 
operator. 

Apparent Singular Behavior 

In cer ta in  limits of our  radiation parameters the  governing eqn. (76) 
appears t o  contain  singular  behavior. Similar t o  the  observations  of  Vincenti 
and Baldwin, we see that, when A -+ 0, X * or  K + 0, t he  terms t o  the  r igh t  
of eqn. (76) go t o  zero and a correct  solution can be found from the  isentropic 
Prandtl-Glauert  equation, which is a reduction  in  order from the   o r ig ina l  
different ia l   equat ion.  Likewise, when K -+ a, the terms t o  t h e  r igh t  i n  eqn.(76) 
dominate and a correct  solution i s  found from the isothermal  Prandtl-Glauert 
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equation,  again a reduction  in  order  from  the  original  differential  equation. 
As Van  Dyke [ 351 points  out , such  behavior  in a small parameter  limit  signals 
singular  behavior  unless  the  boundary  conditions  are  consistent  with  the  reduced 
equations.  This  consistency  is  exactly the  case  here  and  it  is  most  easily 
seen  by  returning to the  original  equations  governing  the  thermal  radiation, 
eqns. (22), (23) and (26). 

In  the  limit A + 0, eqn. (26) infers  that  qi = 0 while  eqn. (22) says 
Io = 4aT4. Thus,  in a completely  opaque  gas , the  intensity  can  be a non-zero 
value  depending  upon  the  local  temperature,  but  there  can  be  no  heat  transfer 
because  photons  emitted  at a location  are  immediately  reabsorbed  an  infini- 
tesimal  distance  away.  Now,  since  continuity of temperature  is  consistent  with 
the  isentropic  equilibrium  solution  and  intensity  is  proportional to it,  we 
conclude  that  thermal  boundary  conditions  will  vanish  in a manner  consistent 
with  the  reduction of  the  governing  differential  equation.  It  is  only  neces- 
s a r y ,  then, to consider  the  Prandtl-Glauert  equation  subject  to  appropriate 
mechanical  boundary  conditions  in  pressure  and/or  velocity. 

In  the  limit A -* eqn. (22) yields  aqi/axi = 0 or  qi = const.  while 
eqn. (23) yields  aIo/axi = 0 or Io = const.  This  says  that  radiant  heat  energy 
of a given  intensity  can  traverse a completely  transparent  gas  without 
alteration  of  its  value,  i.e.,  without  interaction  with  the  gas  itself.  There- 
fore,  any  thermal  boundary  conditions  independently  imposed  at  the  boundaries 
of  such a gas  will  have  no  effect  upon  the  the gas. Once  again  the  Prandtl- 
Glauert  equation  applies,  but  in  this  case,  there  can  be  temperature  slip 
between  the  gas  and  its  boundaries  since  there  is,  in  effect, no thermal  con- 
tact. 

In  the  limit K + 0, or  zero  temperature,  eqn. (26) can  only  admit  the 
homogeneous  solution  qi = 0. From  eqn. (22) this  says Io = 0. Therefore, 
in a completely  cold  gas  the  thermal  boundary  conditions  must  vanish  in a 
manner  consistent  with  the  reduction  to  an  isentropic  governing  Prandtl- 
Glauert  equation. 

In  the  remaining  limit  of K + m, an infinitely  hot  gas,  eqn. (26) implies 
an  infinite  rate  of  heat  transfer  and  therefore an isothermal  state  in  the  gas, 
regardless  of  the  thermal  boundary  conditions.  Thus,  mechanical  disturbances 
in  this gas are  governed  by  an  isothermal form of  the  Prandtl-Glauert  equation 
and  are  influenced  only  by  mechanical  boundary  conditions. 

The  observations  discussed  above  with  respect to eqns. (22), (23) and 
(26) can  be shown to  hold  with  respect  to  their  small  disturbance  counterparts, 
eqns. (761, (82) and (83). The  overall  conclusion  from  this  discussion  is 
that  no  singularity  really  exists  and,  as  Vincenti  and  Baldwin  have  pointed 
out,  solutions  to  the  perturbation  potential  eqn. (76) will pass  over  smoothly 
into  those  of  equilibrium  acoustic  theory  at  these  parameter  limits.  Of 
course,  this  will  mean  the loss of  the  radiation-induced  wave,  leaving  only 
the  classical  wave-form. 
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Cool  Gas  Limits 

Reduction of equations. - We  mentioned  in  the  last  chapter  the  possibi- 
lity  of  perturbing  the  equilibrium  acoustic  theory  to  include a small measure 
of non-equilibrium.  We  may  perform  this  perturbation  directly  upon  the f’ull 
governing  non-equilibrium  differential  equation  for  certain small values  of 
the  radiation  parameters.  The  result  will  be a differential  equation  of 
lower  order  subject  only to mechanical  boundary  conditions.  We  shall  demon- 
strate  this  for a gas  which  is  either  opaque,  cool  or  transparent,  cool. 

In  the  completely  transparent  limit,  there  is  no  absorption  in  the  gas 
and  eqn. (76) reduces to the  isentropic  F’randtl-Glauert  equation 

a2  a2 a 2 

( “ T  + -)#I = 2- (a+ u G) $ 
ax  aY2 a 2 at 

If we  use  this  as an approximation  in  the  right-hand  group  of  terms  in  eqn. 
(76) we may recover  some  measure of non-equilibrium  behavior  in  the  trans- 
parent,  cool  limit  with  the  second  order  governing  differential  equation 

In  the  completely  opaque  limit,  there  is  infinite  absorptivity  and  eqn. 
(84) again  applies.  Using  the  latter  as an approximation  in  the  right-hand 
group  of  terms  in  eqn. (76) will  provide a small  measure  of  non-equilibrium 
behavior  in  the  opaque,  cool  limit  governed  by 

It  is  sufficient  for  the  question of stability to assume a solution 
periodic  in  the  x-direction. Thus, consider  the  vortex  sheet  to  be  perturbed 
from  its  nominal  position  according  to 

h(x,t) = hoe ia(x-ct) 

where ah << 1 in  accord  with  our  requirement  of small disturbances to a 
uniform  %ream, a is  the  real  wave  number  and c = Cr + ici  is a complex  wave 
speed.  Note  that  Ci > 0 indicates  exponential  growth  in  time. 

Compatible  with  eqn. (87) we would  assume a solution  for  our 
disturbance  potential  in  x, t of  the  form 
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and a solution  for @ as 

where,  for a transparent,  cool 

a = [l - ("1 - c -u i(y-l)K 
aX 

and  for  the  opaque,  cool  gas 

n z i (y-l)aAK  c-U 
1 5 

a = (1 - [ 1 +  3 (7) 11 ". 

where  we  restrict  the  branch  such  that ur 2 0. 

EiRenvalue  problem. - Eqn. (89) demands  application  of  two  boundary 
conditions  in  each  gas.  Placing  the  vortex  sheet  nominally  at y = 0, we  may 
require  vanishing  disturbance  as y -+ -.* This  leaves us  with 

Q1 = Ble 1 Y 

for  the  gas  in y < 0 and 

for  the  gas  in y > 0. 

* In  the  limits  of K / a X  = 0 for a transparent gas or  aXK = 0 for  an  opaque 
gas,  eqn. (84) goversn  and  we  have  the  possibility of undamped  outgoing 
waves  in  the  case  of  supersonic  disturbances ( I c-Ul > a). Lin 1201 remarks 
that,  unless  we  impose  some  restriction  at  infinity  in  this  case,  we  have 
no  discrete  characteristic  value  problem.  In  the  presence of thermal  radi- 
ation,  however,  the  decay of  the  disturbance  as  it  propagates  to  infinity 
is a natural  consequence,  even  for  supersonic  disturbances, and the  im- 
position of a vanishing  condition  at  infinity  is  no%  unduly  restrictive. 
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The  remaining  conditions  are  satisfied  by  matching  the  pressure  and 
normal  velocity  component  across  the  vortex  sheet  at all times.  The  second 
of  these  requires 

ah  ah  ah - = v;(o) - U1= = v;(o) - u2 ax at (94 1 

Using  eqns. ( 7 7 )  and ( 7 9 )  and  substituting  eqns. ( 8 7 )  and (88) into  eqn. ( 9 4 )  
will  allow  the  two  matching  conditions to be  expressed  as 

Finally,  if  we  substitute  eqns. (92) and ( 9 3 )  into  eqns. ( 9 5 )  and ( 9 6 )  
and  eliminate  coefficients,  we  will  be  left  with  the  eigenvalue  equation 

c-u1 2 c -u2 2 
y (-1 Y (-1 

al a2 

( 9 7 )  

We  remark  that  this  equation  is similar to  the  one  treated  by Wang for  chemical 
non-equilibrium  in  the  perturbed  flow  and  that  it  is  reducible  to  that  treated 
by  Pai  and  Miles  for  isentropic  flow. 

Stability. - We  first  question  whether  or  not  eqn. ( 9 7 )  contains a 
neutral  stability  curve.  We  should  first  check  to  see  if  there  is any region 
where  eqn. (97 ) cannot  govern  when  ur 0. Let c = c and  consider r 

where 8 = tan-l(at/+).  Define "B < 8 < 'II for  the  desired  branch  for  single- 
valuedness. Our present  problem  is  to  determine  when u = iai  only,  and  this 
would  occur  only  when + < 0 and  ai= 0. This  happens  only  when I (cr-U)/al > 1 
and k = 0 where,  for  the  sake of argument,  we  have  defined k = aXK for the 
opaque,  cool  gas or k = K/aX for  the  transparent,  cool  gas.  Thus, so long  as 
k > 0 in  both a1 and u2 we  are  including  all  possible  neutral  disturbances. 
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Now, we separate real and imaginary par t s  of eqn. (97) for c = 0. i 

Since or > 0 fo r  a l l  cases of k > 0,  it i s  immediately  apparent that  t h e  f irst  
of eqns. ( 9 9 )  cannot be s a t i s f i e d  when k > 0 i n   e i t h e r  u or  u Therefore, 
w e  conclude  that   there i s  no neu t r a l   s t ab i l i t y .  1 2' 

Next, w e  must determine whether the  vortex sheet i s  completely stable o r  
unstable. We can do so by  mapping t o  a Cauchy-Nyquist diagram. Define 

so that  F (c )  = 1 + G(c) = 0. If, in   p lo t t i ng   t he  whole upper half  c-plane 
onto  the G-plane, we enc i rc le  G = -1, then the sheet i s  unstable. Note the 
double  zero a t  c = U2 and the  double  pole at c = U1. We must f ind t h e  loca- 
t i o n  of  branch  points  of  G(c) which w i l l  be, of  course, the branch  points  of 
the  u ' s .  

For t h e  transparent,   cool  gas w e  have  branch  points at 

both  of which are i n   t h e  lower h a l f  c-plane. 

For the  opaque,  cool gas we have  branch  points at 

both  of which a r e   i n  t h e  lower half  c-plme. 

Thus, mapping the  upper half  c-plane  onto  the G-plane w e  have only one 
r e a l  concern, which involves  the  double  pole at c = U . We need not  actually 
map the  G-plane but  only  notice t h a t  i f  w e  s e t  (c-Ul))a, = &eie and move 
counter-clockwise  about c = U 1  from 8 = 0 to 8 = 8 ,  t h e  argmwnt of G(c)  goes 
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correspondingly from 0 t o  2rr, thus   encircl ing  the G = -1 point  once. There- 
fore ,  we conclude t h a t  the vortex sheet is unstable f o r  kl or  k2 > 0 regard- 
less of  whether the gases are transparent  or opaque,  cool. This w i l l  be taken 
t o  mean t h a t  there is  at least one mode which i s  unstable;   there  can  be  other 
modes which remain stable. 

Stat ic   considerat ions.  - It would be in t e re s t ing   t o   a sce r t a in  why a 
vortex  sheet between two semi-infinite  isentropic gases can  have a region  of 
neut ra l   s tab i l i ty   accord ing   to   Mi les '   c r i te r ion   bu t  complete instabi l i ty   occurs  
i f  e i the r  gas contains a measure of  non-equilibrium  behavior. We may do t h i s  
i n  a crude way by t r e a t i n g  the vortex sheet by static considerations as did 
Ackeret (see Liepmann and Puckett [lg]). What w e  are about t o  do i s  treat the  
vortex sheet as though it were a f l ex ib l e  w a l l  with a prescribed motion 

h = hoRe [ e  i a( x-crt ) 

where h, is a small constant and cr i s  a r e a l  wave speed  only.  Thus, we  are 
now t r ea t ing  a determinate problem rather than  an indeterminate  eigenvalue 
problem.  Consider the   gases   to  be moving i n  opposite  directions and  each a t  
a speed r e l a t i v e   t o  the  wall equal   to  half the i r  velocity  difference.  

Consider f irst  t h e  gas i n  y > 0. If we d i f f e ren t i a t e  the  disturbance 
poten t ia l  eqn. (85) o r  (86) once with  respect   to  y w e  can j u s t  as w e l l  express 
either of them as operators on the  disturbance  velocity component v ' .  The 
corresponding  solution t o  eqns. (88 ) and (93 ) f o r  y > 0 i s  

v '  = A R e  [e -cay + ia(x-crt ) 1 

where u is  given by e i t h e r  eqn. (90) o r  (91). The prescribed 
w a l l  w i l l  now f i x  the  value of A, t h a t  i s  

(104 

motion  of the 
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dh ah 
d t  a t  0 

n 
v ' ( 0 )  = - = - 

+ U a x  ah = h  a(U-cr) Re [ e  ia(x-crt + -1 
2a 3 (105 

Therefore, eqn. (104) becomes 

V '  = hoa(U-cr) R e  [e-aw + ia(x-crt + -) 
T 

2a 1 (106 

We may  now in tegra te  eqn. (106) with r e spec t   t o  y and d i f fe ren t ia te  it 
with r e spec t   t o  x  and t i n  accord wi th  eqns. (77) and (79) t o   g e t   t h e  
perturbed  pressure f ie ld  

2 1 
6 h 0 a  (U-cr -auy + ia(x-crt - - t a n  -1 -1 i 0 

p' 3 - Re [ e  a U 
r 3  (107 

On the  w a l l  on t h e  y = 0 s ide eqns . (103), (106) and (107) become + 

h ( x , t )  = hocos a(x-crt) (108 

V'(x , t )  = hoa(c r -U> sin  a(x-cr t ) .  (109 1 

yGhoa  (cr-U 2 U 

a2 r a U 
p ' ( x , t )  = - cos  a(x-c t - - t an  -1 1 -1 i 

r 
I- A 

Now, i f  we look a t  the  y = 0-side  of t h e  wall, t he  phase  changes by IT, 
thus 

u =  

then 

making a sign change in   p ' .   In   the   case  of isentropic  gases 

, / ! T I 2  so that  i f  1-1 < 1 then u = u only and if 1-1 > 1 
c -u c -u r r 

a a r a 

u = i o  only. i Consequently, for  supersonic wave speeds ( r e l a t i v e   t o   t h e  
c -u 

stream) there  i s  a phase shif t  of n/2 i n  the  pressure. If 1 7 1  > 1 for  both 
streams,  but i n  opposing direct ions with r e spec t   t o   t he  wall, we  may have 
cancellation  of  forces on t h e  wall. At time t t h i s  appears as shown below. 

r 
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Otherwise,  if the streams  are  subsonic  with  respect to  the w a l l ,  there  is 
reinforcement  rather  than  cancellation  of  pressure  forces.  This  is also 
sketched  below. 

t Y  Amin 

T 

We  should  perhaps  keep  in  mind  that,  in  accordance  with  Miles'  theory, 
it  is a necessary  condition for neutral  stability  that  IU2-  Ull > (a1 + ae), 
but  not  sufficient.  In  other  words, a single  mode  only  obtains  neutral 
stability,  having  the  above  pressure  shif%,  when  IU2 - Ull > (al + a2), 
thus  causing  the  eigenvalue  equation  to  be  satisfied.  However,  when 

Iu2-Ul I > ("1 2/3+ a2 2'3)3/2 all  modes  are  neutrally  stable  and  would  then 
correspond  to  the  pressure  balance  shown. 

Now,  when k # 0 we always  have u = ur + iui,  that is ur, ai # 0. In 
this  case,  the  tan-l(u~/u,)  term  causes  the  phase  to  vary  continuously  within 
0 to a/2. With k > 0, the  phase  shift  must  be  less  than a/2, even  for  super- 
sonic  wave  speeds.  This  condition  is  exhibited  below. 

Stabilizing or de-stabilizing  effects. - From  the  preceding  argument  we 
may  infer  thyt a measure of non-equilibrium  is  de-stabilizing to supersonic 
disturbances  but  stabilizing to subsonic  disturbances  (although  both  remain 
unstable).  Unfortunately,  however,  we  can  show  that  the  stabilizing  effect 
is  small  while  the  de-stabilizing  effect  is  large.  We  shall  argue  in  the 
following way : 

For  subsonic  flow  relative  to  the  wall  in  the  above  static 
tanw1(  Ui/Ur) = 0 when k = 0. Upon  increasing k from  the  zero 
a corresponding  increase  in u /a but  the  value of tan-l(ui/ur) i r  

analy s is , 
value  we  cause 
increases  from 
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zero  very  slowly.  This  means  that  the  pressure  shift  is  quite  small  for  an 
increase  in k (of  either  gas)  and  consequently,  the  subsonic  stabilizing  effect 
is small. 

For  supersonic  flow  relative to the  wall  in  the  above  static  analysis, 

about  a  great  change  in  ui/ur  and  a  correspondingly  substantial  decrease  in 
tan'l(ai/or). Therefore,  the  pressure  shift  (from  the  isentropic  shift  of ~ / 2 )  
is  large  and  consequently,  the  supersonic  de-stabilizing  effect  is  large. 

tan-l(oi/ur) = sr/2 since  (Ui/Ur) + when k = 0. A small  increase  in  k  brings 

"he  above  argument,  on  the  basis of static  considerations,  is  crude  but 
qualitatively  correct.  In  a  subsequent  section  of  this  chapter  we  shall  see 
that  these  observations  for  small k prove  out. 

Physical  interpretation. - Perhaps  the  most  pertinent  question  at  this 
point is "What  is  the  physical  explanatior,  for  the  fact  that  the  presence of 
a  measure  of  thermal  radiation  non-equilibrium  in  the  perturbation  of  either 
gas  has  the  stabilizing  or  de-stabilizing  effects  discussed  above?''  We can 
offer  an  explanation  by  way of comparison  to  the  case  of  isentropic  gases.  For 
the  latter,  when IU2-U1 I > (a1 + a2), a  disturbance  propagating  away  from  the 
vortex  sheet  cannot  radiate  acoustic  energy  back  across  the  sheet  into  the 
other  gas  and  consequently,  the  gas  into  which  the  disturbance  is  propagating 
acts  in  a  spring-like  manner  to  the  disturbance.  On  the  other  hand,  when 
IU2-Ull (a1 + a2), there  can be a  feed-back  of  acoustic  energy  and  a  conse- 
quent loss of  some  of  the  spring-like  behavior. 

In  the  presence  of  thermal  radiation, some energy (of a  disturbance)  can 
be  transmitted  at  the  speed  of  light.  This  means  that,  when a disturbance is 
propagated  into  one  of  the  gases,  this gas has  the  ability to l'rela"'  'the 
disturbance.  When IU2-Ul1 > (a1 + a ) y  this  diminishes  the  spring-like 
resistance of the  gas  whereas  when TU2-U1I ( ~ 1  9 a2)  , this  "Telaxation" 
reduces  the  amount sf acoustic  energy  feed-back  across  the  vortex  sheet  to a 
small  degree. 

Infinitely Eot Gas 

In  the  last  section  we  discussed  the  fact  that  there  is  a  region  of 
neutral  stability  (Ci = 0 )  for  supersonfc  disturbances  when IU2-U1 I > 

(a, + a 2/3  2/3)3/2 in  the  limits of completely  opaque ( X  = 01, completely  trans- 
2 

parent (X = m )  or  completely  cold (K = 0) gases.  Another  region of neutral 
stability  can  be  shown to exist  in  the  limit  of an infinitely  hot ( K  = m )  gas. 
We  have  already  discussed  Vincenti  and  Baldwin's  observation  that  either  the 
modified  classical  wave  or  the  radiation-induced  wave  can  exist  in  this  limit 
depending  upon  the  boundery  conditions.  Since,  in  the  isothermal limity  the 
radiation-induced  wave  produces  a  field  which  is  uniform  in  space  (due  to  its 
infinite  propagation  speed)  and our boundary  conditions  are  homogeneous  at 
lyl + , we cannot  expect any disturbance  propagating  with  this  wave  to 
be  maintained.  On  the  other  hand,  a  disturbance  propagating  with  the  modified 
classical  wave  at  the  isothermal  speed  of  sound  can  produce  variations  in  the 
field  properties  of  pressure  and  velocity,  contributing  to  disturbed  motion of 
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the  vortex  sheet.  !Thus, we need only  s tudy  the  s tabi l i ty  of disturbances 
governed by the  isothermal form of the Prandtl-Glauert  equation* 

a ‘ ( 2  + u & l - ( T  a2 + - ) I $  a2 = 0 2 

a ax aY2 2 a t  

and the  xcechanical  boundary conditions  of  eqns. (95 ) and (96 ) . 
The problem we have now described is  completely  analogous t o  that  of 

Pai and Wiles but   for   the replacement. of t he  isentropic  sound speed  with  the 
isothermal sound speed.  Taking y1 = y2 = y ,  subsonic  disturbances now appear 
when IU2-U1 I (a1 + a 2 ) / 6  with  one of the  two pr incipal  modes being  unstable. 
Supersonic  disturbances  appear  in  three  principal modes w i t h  one unstable when 

(a1 + ~ 2 ) / &  < I u ~ - u ~  I (a, 2/3 9 aE’3)3/2/6 and all. three  neutral ly   s table  

I n  the  next  section  of t h i s  chapter we s h a l l  show numerically that  the  
solution to the  isentropic  (cold  gas) l i m i t  goes  smoothly  over into  the  solu-  
t ion  in  the  isothermal  (hot gas) l i m i t . * *  I n  view of t h e  f ac t  that  we have 
instahi l i ty   for   the  plane  vortex  sheet  i n  the  isentropic  and isothermal limits 

f o r  I u2-u1 I < (a, 2/3 9 t3E’3)3/2 and IU 2 1  -U I < (a:/3 + a2/3)3/2/& 2 respectively,  
and that a measure of  non-equilibrium i s  de-stabil izing  for  supersonic  disturb- 
ances in  the  cool  gas  cases,  we  may project that  there will be no complete 
s t a b i l i t y   i n  any intermediate  region of  non-equilibrium. 

Non-Equilibrium Region 

Problem formulatiozl. - We shall now extend  our  study of t h e  s t a b i l i t y  of 
the  plane  vortex  sheet  in an i n f i n i t e  domain through  the  region  of  radiative 
non-equilibrium. To do t h i s  we must derive our eigenvalue problem  from the  
full different ia l   equat ion and  boundary conditions. The equations which  govern 
OUT problem are eqns. (76)-(83). If we apply the  small disturbance  solution 
i n  ( x , t )  given by eqn. (88) these may be  expressed as 

* This can  be der ived  direct ly  from the  original  perturbation  equations 
s tar t ing  with assumption  of  zero  perturbation  temperature. 

** it appears t h a t  the subsonic and supersonic  phase  relations  described 
fo r  Ackeret’s w a v y  w a l l  i n  the  isentropic  l i m i t  are  destroyed wi th  the  
introduction of radiative  non-equilibrium  but  restored upon reaching  the 
isothermal l i m i t .  
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where we have  defined n = ay, 

m = l +  iaK 
'W (120 1 

and  dropped  x-direction  heat flux and  its  derivative  in  accord  with our small 
disturbance  requirement.  Heat  flux  boundary  conditions  can  then be applied 
to leading  order at the nominal  position ( y = O  in the present case) of the 
interface. 

Defining 

where,  for  uniqueness, Re(a,b) 
(112 ) as 

each 

(124) 

- > 0, we may write  a  general  solution to eqn. 

Eigenvalue  problem. - Eqn. (125) requires  four  boundary  conditions  in 
gas. Requiring  finiteness as ly I * leaves the solution 

for the gas in y < 0 and 

for the gas  in y > 0. 
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The remaining  conditions  consist  in  matching  pressure, normal veloci ty  
component, integrated  intensi ty  and heat f lux  across  the vortex  sheet. The 
first two of these are given by eqns. (95) and (96). Using  eqns. (118) and 
(119)  the lat ter two may be expressed as 

Substi tuting eqns.  (126) and (127)  into  eqns. (95), (96) ,  (128) and (129) 
w i l l  y ie ld  a  set of four homogeneous equations  in A 1 9  C1, Bg and D2. Set t ing 
the  coefficient  determinant  of  these  equal  to  zero  consti tutes  the  eigenvalue 
equation. This w i l l  t ake   the  form 

If we simplify by se t t i ng  y1/y2 = al /a2 = 1 and VI = 0 (only t h e  r e l a t i v e  
speed of the gases is important)  the  individual components of  eqns. (130) 
become 

a = 1  11 

a - 
21 1 - a  

a 31 m a  - n  
2 - - 

1 1  1 

a 12 = 1  

a = bl 22 

- )'2 2 

x1 
a - - - (m2a2 - n2) 33 

2 = a ( m a  1 l c n l )  

a = m b  - n  2 
32 11 1 

- x2  2 
a34 x1 

- - - (m2b2 - n2) 

where we have defined c = c /a  and 0 = U2/a. 

Results. - In  producing  numerical  results it i s  s u f f i c i e n t   t o  choose  cer- 
ta in   typ ica l   va lues   for  our parameters. We have  proven i n   t h e  last chapter 
that ,  f o r  a given  value of K, maximum non-equilibrium  occurs when the trans- 
parent'  and  opaque operators   in  eqn. (76) are balanced.  Therefore, we  may f o r  
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the  present  purposes,  consider  it  sufficient  to  select aX =@(1) for  each  gas 
and  pursue  the  complete  range of K. 

Since we are  concerned  with  the  question of instability  we  shall  choose 
to produce  results  only  for  the  unstable  mode  emanating  from  the  principal 
branch  descrihed  by  Miles.  The  question  remains as to what  slip  speeds  to 
choose.  Figure 6 shows  the  stability  behavior  of  the  most  unstable  mode  in 
the  isentropic  and  isothermal  gas  limits.  Since  the  behavior  changes  between 
subsonic  and  supersonic  disturbances  and  again  when  supersonic  neutral 
stability  is  achieved, we should  choose  at  least  one  value of 0 in  each of the 
ranges 0 < 2 / 4 ,  2 < 0 e 2 m ,  2 m  < 0 < 2 f i  and 0 > 2 f i .  

Figures 7 through 11 display  the  stability  behavior  of our selected  mode 
through a large  range  of K for  chosen  values  of y, aX1, aX2 and v’. It  is 
readily  seen  that  there  is no region  of  complete  stability  in  the  presence of 
radiative  non-equilibrium.  The  wave  speed Cr remains  equal  to U / 2  through- 
out the  non-equilibrium  range  while  the  amplification  factor  undergoes a 
smooth  transition  between  the  isentropic  and  isothermal  limits.  Subsonic 
disturbances  are  monotonically  stabilized  to  some  extent  depending  upon 0 while 
supersonic  disturbances are  de-stabilized  and  then  stabilized  as K increases. 
Dfsturbances  in  the  range 0 > 2fi lose  their  neutral  stability as K increases 
from  zero  but  become  neutrally  stable  again as K + -. Note  especially  that, 
for the  case  where 2 m  < .c 2 f i ,  the  mode  is  unstable  at  the K = 0 
end but becomes  neutrally  stable  as K: -t m . 

Discussion. - Earlier  in this chapter  we  explained  the  physical  consequence 
of introducing a measure of radiative  non-equilibrium to initially  isentropic 
flows. l’he relaxation  effect upon the  disturbance as it  propagated  into 
either gas explained  the  de-stabilization to supersonic  disturbances. Now, 
however, as the  gases  become  hot  enough, thermal radiation  is  quite profuse, 
tending to smooth out a l l  temperature  variations  and  reduce  the  intensity of 
the  mechanical  disturbance  throughout  the  field.  Thus, a new  (isothermal) 
relationship  is  estaklished  between  pressure and velocity  at  each  paint  in  the 
field and the  vortex  sheet  becomes less ‘unstable  for a given  velocity  slip 
across  it. 

With regard to the  stability of the  vortex  sheet  between  semi-infinite 
isentropic  gases  Pai  remarked  that,  in  general,  the  characteristic  equation hss 
infinite  roots.  However, as Mile5 has shown,  the  principal  branch  of  the 
smlution  to  the  characteristic  equation  has  only  two roots for  subsonic 
disturbances  and  three roots for  supersonic  disturbances. It has  been our 
objective  to  identify  in our problem only  these  principal  branch  roots  and, 
in  particular,  to follow the  behavior  of  the  most  unstable  one.  There  remains 
a question,  however,  with  regard  to  the  possibility of modes  generated  in 
conjunction  with  the  radiation-induced  wave  in a region of radiative  non- 
equilibrium. A purposeful attmpt was  therefore  made  to  alter  the  parameters 
of our problem  in  solving  the  characteristic  equation  to  see  if new  unstable 
modes, not  identifiable with the  classical  acoustic  wave,  could  be found. 
This effort  did  not  bear  fruit  and  perhaps  it  is  not  surprising.  Vincenti  and 
Baldwin have  indicated  that  disturbances  of a mechanical  nature  (for  instance, 
pure  lzarmonic wall motion)  give  rise  predominantly to  the modified  classical 
wave  while  the  radiation-induced  wave  is  present to a lesser  extent  and has 
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high  speed and la rge  damping over most of the  parameter  ranges.  Thus, it is 
highly  l ikely tha t  any modes that might  be associated with the  radiation- 
induced wave are very stable and not  of  concern. 

VORTEX SHEET NEAR SY"E?TRY PLANE 

Equilibrium L i m i t s  

In t h i s  chapter we she l l  extend our problem t o  inc lude   the   s tab i l i ty  of 
a plane  vortex  sheet  near a v i r t u a l  boundary, which may be a plane sf symmetry 
f o r  a two-dimensional J e t   o r  wake. We shall continue  our  assumption of an 
isothernal  base flow,  thus  allowing radiative non-equilibrium t o  occur  only 
in   the  per turbat ions.  We shall speak  of the  "inner"  gas as that which is 
confined and f i n i t e   i n  dimension and the  "outer"  gas as that which i s  bounded 
only at i n f in i ty .  An appropriate  sketch is shown i n  Figure 12. 

Betchov  and Criminale has indicated a s tabi l iz ing  inf luence upon the  
vortex sheet in  incompressible  flow when introducing a wall i n to  one of the  
isentropic streams new the sheet. The nearness of the  wall is  measured i n  
terms of   ayl  where a is  the wave  number of t he  disturbance and y l  is t h e  
dis tance between the  vortex sheet and the  wall. The smaller ayp, the more the  
s tabi l iz ing  inf luence.  

In   contrast ,  as G i l l  and  Lessen e t  a1 make clear, introducing a v i r t u a l  
boundary t o  supersonic  disturbances i n  isentropic  gases will have j u s t   t h e  
opposite  effect .  The disturbances are now a b l e   t o   t r a v e l  withou% decay t o  the 
boundary  and r e f l e c t  back t o m d   t h e  gas interface.  For  supersonic  disturbances 
which a re   i n i t i a l ly   uns t ab le  the  introduction of the  boundary is l e s s  and less 
s t ab i l i z ing  a t  higher and higher s l i p  v e l o c i t i e s   u n t i l  finally, when .~ 

I u2-u1 I > ( 9 ' 3  + a2 2/3)3'2p there  is a de-stabil ization. The l a t t e r   occu r s  

by v i r tue  of t h e   f a c t  that  waves can r e f l e c t  back and forth  within  the  inner 
gas rat resonance  angles  releasing  large  mounts of energy t o  the  sheet.  The 
over-all consequence of a v i r t u a l  boundary existing  near  the  vortex  sheet i n  
isentropic  f low will be t~ a f fo rd   i n s t ab i l i t y  a t  a l l  s l i p  speeds. 

The consequences  of  placing a v i r t u a l  boundary within  "sight"  of  the 
vortex  sheet as outlined above w i l l .  carry mer completely to   the   i so thermal  
equilibrium state when the  gases are very  hot.  In  pursuing the argument we 
need only t o  replace the  isentropic  sound speed wi th  the  isothermal sound 
speed. 

An in te res t ing   fea ture  of the  presence  of a v i r t u a l  boundary is  the f a c t  
that t h e  wave speed of the pr incipal   unstable  made is  reduced, no longer 
allowing  us to   ident i fy   subsonic  and supersonic  disturbances ( I c-U I e a and 
Ic-Ul > a r e spec t ive ly )   s t r i c t ly  with particular.   ranges  of  sl ip  speed. Now, 
a disturbance may be subsonic   re la t ive   to  the  inner stream but  supersonic 
re la t ive   to   the   ou ter   s t ream,  for example. 
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Eigenvalue Problem 

"he equations  governing either the  inner   or   outer   gas  m e  l i s t e d  as 
eqns.  (112)-(121). The solution  expressed  in eqn.  (1251, o r  more par t icu lar ly  
eqn. (127 ) , s t i l l  is appropriate for the  outer  gas. The inner  gas, however, 
has a v i r t u a l  boundary a distance  ay1 away from the   in te r face .  Thus, it is 
more convenient t o   r ede f ine  p from  eqn. (122) as 

leaving  eqns . (123 ) and  (124 1 as they are, and giving  the  general   solution  for 
the inner gad = as 

It w i l l  be convenient t o   t r a n s f e r   t h e   o r i g i n  of our coordinate  system t o  
t h e  plane of symetry  and. consider  only  the problem bounded i n  0 5 r~ .z Q). 
Thus, the  inner  gas i s  confined  in 0 2 n 5 ay l  while the  outer  gas ex i s t s  i n  
ayl 2- n .z 0 .  The choice of boundary conditions t o  be  specified at the  plane 
of symmetry is arbitrary.  Since  the  resul ts  for symmetrical  and an€i- 
symmetrical  disturbacces  in  isentropic  gases are qua l i ta t ive ly   the  same, as 
exhibited by Lessen e t  a1 [I71 , we shall l i m i t  our choice t o  symmetry i n  
pressure and integrated  intensi ty .  Thus, our boundary conditions at n = 0 
become ~ ' ( 0 )  = ql(0) = 0. Analogous t o  our one-dimensional problem these a r e  
expresse& as Q'(0) = 4- i '  '(0) = 0 i n  terms of the  potent ia l   funct ion.  Applying 
these t o  eqn. t 1 3 2  I leaves 

As before, we match pressure, normal veloci ty  component, integrated 
in tens i ty  rand heat flux across the   in te r face .  From eqns. (871, (113) , (115) , 
(118) and (119 1 these are 

I z 

.. . 
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If we once again assume, for simplicity,  that y l /y2  = s /a2 = 1, - 
U1 = 0 ,  c = c/a and 0 = U2/a and substitute eqns. (133) and 1127) into eqns. 
(134)-(137), we shall have .the eigenvalue  equation 

where 

- 
ea2 Fb2 

a21 = 1 1  22 1 1 1 23 " " - " sin a ay et = b sin b ay a = - - 
C-LJ 

- 
" 

h: -U 

2 a = (m a2 + n cos alayl 31 1 1  1 32 1 1  a = (mlbl + n,) cos b ay 

2 
a33 1 

= (m2a2 - n2) 
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Results 

Eigenvalue  behavior. - We have now posea a problem  which  depends upon t h e  
proximity of n plane  of symmetry t o  t h e  vortex sheet. Since our objective i s  
primarily  to  discern  the  effect   of  thermal  radiation upon t h e  vortex sheet 
s t a b i l i t y ,  we shall   not  at tempt  to  exhaust  solutions  for a complete  range  of 
t h e  new length ay1. This  has  been done by Betchov  and Criminale for  subsonic 
flow and by Lessen et a1 for  supersonic  flows. We shall consider it suf f ic ien t  
t o  choose a single  fixed  value  of ayl such t h a t  t he  proximity of the  plane  of 
symmetry does  cause a discernible   effect  upon our unstable  principal  acoustic 
mode, and then  proceed t o  study  the  effect   of the thermal  radiation upon t h i s  
mode at di f fe ren t   s l ip   speeds .  We sha l l   see  that the   rad ia t ion   e f fec t  i s  
superimposed i n  such a way as t o  allow  generalization  for  other  reasonable 
choices of  ay1. 

Figures 7 through 11 present, t he   r e su l t s   fo r   t he   p re sen t  problem. In  the  
K << 1 limit approaching the  isentropic   case we f ind t h a t  t h e  resul ts   agree 
with those of Betch.av and Criminale and  Lessen e t  al. The subsonic and super- 
sonic  flows  %or U < 2fi have  been s tab i l ized  b the   pox imi ty  of the  plane  of 
synunetry while the supersonic flows fo r  U > 2 P 2 appear t o  have  been de-stabi- 
I ized. Taking account  of t he  lower  speed  of sound in   the  isothermal  limit, 
these   r e su l t s  c.arry over as previously  described. It is in te res t ing  t o  note 
t h a t  the d is turbmce 'wave speed i s  reduced in   the  isothermal  limit by v i r tue  
of  the  presence of the  plane of symmetry. This  is apparertly due t o   t h e   f a c t  
tha t   the   acous t ic  wave - t ravel ing  in  the inner gas Cioes so at the  lower sound 
speed and thus   t akes   longer   to   re f lec t  back t o   t h e   i n t e r f a c e  where it re in -  
forces   the wavy nature of the  disturbance. This drop  in wave speed  with  higher 
temperature i s  much l e s s  pronounced f o r   t h e  subsonic  cases  since  the dis tur-  
bance  decays  while  propagating wi th in  the  inner gas.  

Through the  t ransi t ion  region of radiative  non-equilibrium between the  
isentropic  and isothermal limits the  behavior of the  unstable mode is  smoothly 
varying,  effecting the t r ans i t i on  from the  higher   isentropic   values   to   the 
lower  isothermal  values,  primarily  through  the  region of maximum non-equili- 
brim. Changing the  order of the  opaci ty  i n  either  gas will delay th i s  trans- 
i t ion   s ince ,  as w e  have previously  observed, a gas with e i the r  a high  or a  low 
opacity w i l l  a c t  more i n  an isentroplc  manner at moderate  temperatures.  For 
instance,   le t t ing  e i ther   gas  be f a i r l y  opaque w i l l  allow  us t o  drop the   t rans-  
parent  operator  in  the  left   of eqn. (76), leaving  us w i t h  t he  parameter  prod- 
uc t  AK before  the  isothermal  term. It is then  apparent that higher tempera- 
t u re s  &re required  to   achieve an i so thermal   s ta te   in   the  gas. Such an exam- 
ple,   al lowing  the  inner  gas  to be more opaque, i s  exhibited  in  Figure 10. On 
the ether  hand, i f  we allow one of the   gases   t o  be fa i r ly   t ransparent ,  we 
may drop  the opaque operator on the l e f t  of eqn. (761, leaving  us with t h e  
parameter  product K/A before t5e isothermal  term. Again we would require 
higher  temperatures to  achieve  an  isothermal  state  in  the  gas.  

Prof i le   funct ions.  - We may  make a f e w  remarks  of i n t e re s t  with regard 
to   t he   p ro f i l e   func t ions  of perturbation  pressure,   velocity and temperature. 
From eqns. (1131, (115) and (116) w e  may def ine  prof i le   funct ions  for  the inner 
and outer  gases as 
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Figures 13 
t h e i r  magnitude 
interface.  One 

through 16 show se lec ted   p lo ts  of these  funct ions  in  terns of 
and phase. The profi le   of   pressure has been  normalized at the  
of the interest ing  features   concerning  the  dis t r ibut ion  of   the 

prof i le   funct ions is t ha t  they are not  purely  exponentially  decaying  into  the 
semi-infinite  outer  gas as they would be for   i sen t ropic  flow. Because the 
thermal  radiation  acts only as a second order  modification of the  c l a s s i ca l  
( isentropic)  acoustic  behavior th i s  i s  not  readily  apparent from the  figures, 
but it is  a f a c t  that there is  less than an exponential  decay  near t o   t h e  
interface.  Mathematically, t h i s  i s  due t o  the  contribution of the radiatfon- 
induced wave-form t o  the so lu t ion   in  eqn. (127). Physically, t h i s  i s  caused 
by t h e   f a c t  t h a t  energy of t h e  vortex  sheet  disturbance  can be transmitted 
d i r ec t ly  by thermal  radiation  into  the  outer gas t o  a depth on the  order of 
the photon mean Qree path  length. 

The e f fec t  of t h e  plane of symmetry is readily apparent. It can be seen 
tha t   t he re  i s  a build up of pressure and tenpera twe  f luc tua t ions   in   the   inner  
gas, a natural r e su l t  of the   re f lec ted  waves. 

n 4. 

All of the  figures exh ib i t   s l i p  i n  v and T a t  the   in te r face .  The former 
is simply  due to   t he   x -d i r ec t ion   s l i p  speed across the  vortex  sheet. The 
l a t t e r  i s  charac te r i s t ic  of radiat ion problems i f  we neglect  molecular con- 
duction. The amount of t h i s  temperature  sl ip can vary within  the limits of 
isentropic and isothermal  behavior,  depending upon t h e  relati-se  opacity sf the 
two gases and the  temperature level r e f l ec t ed   i n  the  value  of K. 

Comparing p lo ts  for the  different temperature levels (IC = 0.5, 50.0) 
shows a greatly  reduced  temperature  f luctuation  relative to the pressure  fiuc- 
tuation  for  the  higher  temperature.  This exhibits  the  approach  toward iso- 
thermal  acoustic  behavior as the   t e rms   to  the r igh t  of eqn. (76) begin t o  
dominate. 

Comparing p lo t s   fo r  t h e  d i f fe ren t   s l ip   speeds  (v" = 0.5, 2.5) shows that 
the ve loc i ty   f l uc tua t ion   r e l a t ive   t o  the  pressure  f luctuation is l e a s  f o r  the 
supersonic  case.  This  reflects the e f f ec t  of compressibllity. 

44 



VORTM SKEET IN PRESENCE OF BASE FLOW €EAT TRANSFER 

Base Flow 

&~o>lem description. - We shall now extend our two-dimensional J e t   o r  
wake problem t o  one which includes  heat transfer in   t he   base  flow. We sha l l  
consider  the  source for  the  thermal  non-equilibrium as volumetric  heat  gener- 
a t ion  within  the  inner  gas. Then, i f  we f i x  our coordinates  with  the  inner 
gas and claim  that  the outer  gas has a much greater  speed r e l a t i v e   t o  it, we 
can  envision  one-dimensional  heat  transfer  across  the  inner gas i n  t h e  y- 
d i r ec t ion   t o   t he   ou te r  gas which then  absorbs  the  heat and  convects it down- 
stream. Thus, w e  may continue OUT assumption of negligible  x-direction  vari- 
a t ion   in   base  flow properties.  

It remains  our  only  problem i n  t he  base flow t o  determine  appropriate 
temperature  distributions  across  the  inner and outer  gases. This requires 
solution of the energy  eqn. (4) in  conjunction with the   rad ia t ion   t ransfer  
eqn. (26). As app l i ed   t o  the present problem these   a re  

where U = 0 f o r  the inner gas i n  the present  coordinate  system and = 0 
for   the  outer   gas .  

If we neglect  the  convection term in   the   inner  gas t h e  
becomes 

If we assume uniform  heat  generation we note t h a t  the   rad ia t ion   t ransfer  
eqn.  (142)  reduces t o  

Integrat ion of eqn. (143) now yie lds  
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But ¶ 

in to  
f o r  symmetry, l e t  c ( 0 )  = 0 so that C1 = 0. Subst i tut ion of eqn. (145) 
eqn . (144 ) and integrat ion  yields  

where we have taken X t o  be 8 constant  across  the  inner gas. If we s e t  as 
a reference  temperature T(0)  = To and subs t i t u t e  f = 'il/To and rl = uy3 eqn. 
(146) may be wri t ten 

4 2 f = 1 - A n  (147 1 

where we have defined 

A =+ 
8aa ATo 

If we choose t o  l e t  be uniform a t  

from eqn. (1-8) and u t i l i z e   t h e   d e f i n i t i o n s  of the  heat  generation and radia- 
tion  parameters, G and K respectively,  as defined below eqn. (30) we may get  
for eqn. (148) 

thus  f ixing  the  re la t ionship between the  heat  generation and radiation  para- 
meters i n  the base flow. 

Outer gas. - Since  there i s  convection in the   outer  gas there  i s  need to 
concern  ourselves wi th  the x-direct ion development  of the temperature  profile 
in  the  base  f low i n  o rde r   t o   s e l ec t  a typical y-direction  temperature distri- 
bution. If the  outer  gas is i n i t i a l ly   u r , i fom at temperature we expect 
t he   g rea t e s t   r a t e  of' change of i t s  t enpe ra twe   t o   occu r   a t  i ts  common surface 
with the  inner  gas,  8 so r t  of radiat ion boundary layer  gsoxth. The magnitude 
o f  temperature  sl ip which may ex i s t  at t h i s  in te r face  is a function  of  the 
opac i t ies  of the  two gases, the   g rea te r   the   opac i t ies ,  the less the  slip. If 
we assume the   inner   gas   to  be qui te  opaque, i t s  surface may be considered a8 
an opaque radiat ing w a l l  a t  temper6ture Tw. I n   t h i s  esse, t h e  magnitude of 
temperature s l i p  is determined by the opacity of t h e  outer gas, the   g rea te r  
i ts  opacity, the more rapid the boundary layer  growth and the more rap id   the  
development of a non-uniform temperature   prof i le   in   the  outer  gas. Note that 
the re  i s  uniform  heat flux crossing  the  interface at a l l  x-locations  since 
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there is  uniform in t e rna l  heat generation. Thus, there is an essent ia l  
temperature  difference (Tw-Tm) maintained between the inner gas outer surface 
and t h e  h.ee stream of the   outer   gas ,   par t icular ly  i f  the  x-direct ion develog- 
ment of  outer  gas  temperature i s  slow. 

I k e  problem pertaining to the outer  gas t h a t  we have  formulated above 
has t h e  form of 8 Rayleigh  problem, one which  Sparrow and Cess [ 331 have 
t reated.  They found solut ions  for  the temperature  distribution i n  x and y 
for  short   t ime by means of a se r i e s  expansion i n  x and f o r  long time by means 
of t he  r ad ia t ion   s l i p  method. A l inear iza t ion  was  made in   the   so lu t ion  by 
claiming that (%Tm) << (Tw-Tm) , where ? i s  the base  temperature at any point 
during i t s  development i n  the outer  flow. Thus, the long time solution would 
have t o  abide 0y t h i s  r e s t r i c t ion .  They have a l s o  shown 8 solution Tor tem- 
pera tu re   s l i p   fo r  a l l  t h e  (all x] by u s h g  an exponential  approxfmation t o  
the exponential   integrals i n  the   in tegra l  form of the   rad ia t ion   t ransfer  
equation.  This  exponential  approximation is  e f fec t ive ly  w h a t  we have done i n  
a r r i v i n g   a t  eqn. (26) i f  the l a t t e r  i s  r e s t r i c t e d   t o  one dimension. There i s  
8 s m a l l  difference,  however, since Sparrow end Cess have assumed E 2 ( t )  = e -2t 

where w e  have effect ively  taken E2 (t ) = e -6. m e i r  results will, neverthe- 
less, be  taken as app l i cab le   t o  our present p~oblem. Defining 

the i r   s s lu t ion   fo r   t he  s l i p  tmpera ture  T(5 , wl) is 

where I, i s  the  modified Bessel function of‘ the  first kicd. The short  time 
solution  yields 

In  applying  the above analysis t o  our s t a b i l i t y  problem 8 desirable  recsult 
would be the t  only  short t h e  need be considered so that we may use a uniform 
outer gas base  temperature. This -muAd require small 5 according t o   t h e  above 
solution. Putting 5 i n  terns of our usual  nomenclature it may be rewrit ten .fn 
t he  form 
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Thus, we s e e   t h a t   f o r  5 << 1 w e  are only  allowed to   consider  Low temperature, 
high  speed, small absorpt ivi ty   or   short   length  for   the  outer   gas .  

One fac tor  t h a t  has  been le f t  out of   the above analysis i s  a measure of 
the  original  temperature slip. If t h i s  i s  not  very  large we need not be 
concerned  with t h e  above cr i te r ion   for   shor t  time. The o r i g i n a l   s l i p  can  be 
measured either  in  terms  of  the  total   heat  generation of the  inner  gas  or  the 
associated  temperature drop through  the  inner  gas. The heat  transferred from 
t he  in te r face  t o  t h e  outer gas at  Tm i n   t h e  opaque w a l l  assumption is 

where t h i s  is t h e  accumulation  over t he  source w i t h i n  the  inner  gas, that  i s  
9, = &,. Therefore, we  may express   the   in5 t ia l   s l ip  as 

Elimination of 6 from eqns. (155) and (156) yie lds  

Thus, as long 8 s  

T 4 

(TS] << - 3y1 
W 8hl 

t h e   i n i t i a l   t e m s e r a t u r e   s l i p  i n  the  outer  gas i s  small and we need not be 
concerned  with the   shor t  time r e s t r i c t i o n  sf our Rsyleigh  problem. 

Inner gas opa.city. - We have taker_ the  inner  gas t o  be qui te  opaque f o r  
the  benefi t  of' the  Rayleigh  analysis. It was not  necessary t o  do so in   order  
t o   e f f e c t  a solut ion  for   temperature   dis t r ibut ion  within  the  inner   gas   in  terms 
of 6. However, it is t r u e   t h a t  a fissioning  gas which has the   capabi l i ty  of 
producing a substantial  volumetric  heat  generation rate does  have a high 
fission  cross-section. Such a gas a l s o  normally  has a high  radiation  absorp- 
t i v i t y .  Thus, it was not  unreasonable for  IPS t o   t h i n k  i n  terms of a f a i r l y  
opaque inner  gas. 
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If we  carry  this  assumption  one  step  further  we may combhe eqns. (155) 
and (156) to  yield 

Using  eqn. (148 ) we may get 
m 4  

assuming  equal  specific  heat  ratios  and  sound  speeds of' the  inner  gas  at T 
and  the  outer  gas  at E. In the case of yl/X1 >> 1 the  slip may be  ignore8  in 

A ,  leaving us with 

Perturbation  Problem 

Governing  equations. - Our perturbation  problem  mist  remain  compatible 
to thrbase flow that we have  described above. Thus we must  account  for  the 
transverse  variation  of  the  base flow density and tempersture.  Upon  applying 
the  Galilean  transformation  a/at = P/at + U a/ax, eqns. (30), (ILL), (E), (161, 
(17), (20), (31) and (32) will govern  the  present  problem. Assuing a solution 
in  x,t  for  the  modified  potential  function of the form 

and  letting rl = ay, these  governing  equations  become 
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u ' ( n )  = iCr4 

2 - a ) ]  (168) 

2 
(-) c-u 4 + +{- d2@ - 4 )  a aA c-U 2 dn 

What makes the  present  problem di f fe ren t  from that of t h e  last chapter i s  
the  influence  of  base flow heat t r ans fe r  upon the perturbstions and t he  
bresence of a heat generation  perturbation.  Since  the  former  influences the 
perturbation problen? only  through  the base flow  properties,  i n  par t icu lar   the  
aimensionless  temperature f ,  and t h e  parameter  of t h e   l a t t e r  i s  r e l a t e 8   t o  f 
through eqn. (149), t h e  whole e f fec t  i s  measurable s o l e l y   i n  terms of f .  Thus, 
we a r e  concerned with evaluat ing  the  affect  upon the vortex sheet s t a b i l i t y  of 
non-uniformity i n  f .  It is apparrent  from  eqn. (156) that t h i s  non-uniformity 
can  only be subs tan t ia l  i f  the  gas i s  e i ther   qu i te  opaque or  has  high  f ission 
cross-section.  Since, as we have  pointed  out,  these tw propert ies   are   ent i re-  
l y  compatible, we shall subsequently make t h e  assumption  of a f a i r l y  opaque 
inner gas and use t h i s  r e s t r i c t i o n   t o  advantage i n  the perturbation  analysis.  

Eqn. (156) makes c l ea r  the f a c t  t ha t  in te rna l  heat generat ion  leads  to  
non-uniformity i n  f which will carry a measurable  influence upon the  perturba- 
t i o n  problm. We may show, however, t he t  t he   d i r ec t  a3pearance  of a heat 
generation term in  the  per turbat ion  equat ions has l i t t l e  inf luence  in   the 
opaque gas. Eqn. (149) shows G t o  be  proportional t o  A (aA)2K. Estimating A 
from  eqn. (161) and noting that (1 - K;!/K1) < 1 we f ind  that G < K ~ / ( Y ~ / A ~ ) ~ .  
Therefore, it appears that ,  f o r  moderate  values of K1, the heat geGeration 
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terms  may  be  dropped  from our perturbation  equations."  This  discovery means 
that  the  base flow temperature  profile  in  the  inner gas may  be  produced  by 
other  than a fissioning gas in experiments  used to verify  the  present 
stability  theory. 

With  the  above  discussed  restrictions we may  now  write  the  somewhat 
simplified  equations  governing  the  inner  gas  as 

iaxl% d2 (7 - l)[f @i' - f ipl + yf c ipll = 0 - 5 5 4-2 
3; dn 

* The Pnfluence of this  term upon the eigenvalue 
points and found  to  be nearly indiscernible. 

was spot  checked st several 
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where we are   taking U1. = 0 and defining c ,  the eigenvalue, as i n  the last 
chapter. 

The equations which govern the  outer  gas are those of eqns. (112)-(121). 
Requiring  the  f initeness  condition QS rl -fa, and u t i l i z i n g   t h e   d e f i n i t i o n s  of 
eqns. (122)-(124) w i l l  af ford the solut ion of eqn. (127) with two unknown 
coefficlente  remaining. 

Ei envslue problem. - Requiring symmetq- i n  the  inner gas such t h a t  
vi(o)+ 0 and m8tChing pressure,  normal veloci ty  component, integrated 
in t ens i ty  and heat flux at t h e  in te r face  at n = ayl provldes  us wi th  a problem 
similar in   na ture  t o  t h a t  of t he  last chapter. The only  difference  involves 
the  solut ion of eqn. (171) fo r  the inner g a s .  This has been  accomplished by 
81 numerical procedure which i s  described izl t h e  Appendix. 

Projected  resul ts .  - In  the  formulation of the present problem we have 
added a nev paraueter A associated wi th  t he  base flow heat t r ans fe r .  With the  
assumption of a f a i r l y  opaque inner gas it might a t  first appear t h a t  the 
product aXIKl i n  egn. (3.71) consti tutes  only one f r e e  parmeter b u t ,   i n   t h e  
ehsencc  of  any  such r e s t r i c t i o n  upon the   ou ter  gas, the parameters aX1 and K1 
appear separately i n  t he  boundary conditions at the   in te r face .  Thus, i f  
t h e  outer gas is radiating  with ar? opacity of unit   order ,  we have the  free 
pa rme te r s  y ,  ayl, E, dl, aX2, KI and K2 after l e t t i n g  yl/y, = a1/a2 = 1. 

Certain observations may be msde pr ior   to   ac tua l   so lu t ion  of the  present  
perturbation problem. We have learned t ha t  ruaxirnum radiative  non-equilibrium 
occurs i n  t he  perturbations for a given  temperature level ( r e f l ec t ed   i n   t he  
value on' K) when t h e  opaque and t ransparent   aperatom  in   the  radiat ive  t rans-  
fer equation are of the same order. Th i s  notion s t i l l  appl ies  w i t h  regard t c  
the   ou ter  gas f o r  which we have made no opac i ty   res t r ic t ion .  For the  inner  
gas,  howeuer, we have required it t o  be fa i r ly  opaque. Thus, comparable non- 
equi1if;ri.m must occw at  higher K. 

Tne influence of var iable  base flcw temperature  can be seen i n  eqn. (171) 
i n  both the  Psentropic and the isothermal  groups  of  terms  (with regard t o  
pertnrbations only) .  In  a region where f = 1 we have the  usual isentropic  and 
iso%hermal somd speeds but 5.2 regions where f 1 t he  sound speeds are effect-  
ively reduced, 1eRdling to a lesser acoustic impedance in the gas. I n  the  last  
chapter we sak- where t h e  lesser isothermal sound speed  contributed t o  some 
s t ab i l i za t ion .  I% t h i s  car r ies   over   to  t h e  present caseg we might, expect  that  
the  influence of lesser sound speeds (by coinparison t o  our reference value of 
a = G T , )  i n   c e r t a i n  regions of t5e  inner  gas w i l l  be  one of s tab i l iza t ion .  

We mieht point out also that   the  product cxAiKjf5 appears as a coef f ic ien t  
t o  the  highest   der ivat ive  in  eqn. (171). Xhen t h i s  is sma.11 it would appear 
t o  make aur  prcblem  singular. But, as w e  have previously  discussed, t he  
solution goes over smoothly to tha t   ind ica t ive   o f   equi l ibr im  acous t ics   in  t h i s  
limit while the  themail  boundary conditions  vanish i n  a regular  manner. 
Pursuance of t h i s  l i m i t  by a numerical procedure, however, can be troublesome 
because  of mult ipl i ra t ion and divis ion 'cy small numbers i n  matching  boundmy 
conditions at t h e  interface.  In  regions where f var ies   rap id ly  further numer- 
i c a l  difficulty can be mountered  because of t h e  demand for  a s m a l l  integrat ion 
step s i z e .  
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Results 

Eigenvalue  behavior. - Figures 17 through 20 display  the  effect   of a 
variable  base  flow  Lanperature i n  the  inner  gas upon the  eigenvalue fo r  
selected  values of opac i ty ,   tmpers ture   l eve l  and s l i p  speed. It can  be 
concluded that   the   base  f low  heat   t ransfer  which accounts  for  the  transverse 
tempereture  distribution  considered i n  eqn. (147) of fe r s  some reduct ion   to  
t h e   i n s t a b i l i t y  of the  disturbed  vortex  sheet. 

Several  observations may be made with  regard  to  the  eigenvalue  behavior 
as a fdnction  of  the  several  parameters which appear in   the   p resent  problem. 
All four figures p lo t   the  complex wave speed c' a s  a function of K2/K1 f o r  
aXl = Figures 17 and 19 also consider aX1 = 10-3 and loe4. In a l l  
cases,  it i s  necessary to   i n su re   t he   va l id i ty  of our numerical r e s u l t s   i n  
l i g h t  of the opaque inner g r s  assumption.  This  assumption, i f  it breaks down, 
will do so adjacent t o   t he   i n t e r f ace  between the  gases,  where the re   ex i s t s  a 
transparent boundary layer.  The l imit ing  cr i ter ion  used i s  based upon a 
calculat ion of t h e  terms  neglected i n  the  analysis  and a comparison  of them t o  
t h e  terms  re ta ined.   Quite   arbi t rar i ly ,   the   sol id   curves  of Figures 17 through 
20 have  been made broken when the  neglected  terms  reach  approximately 20 
per  cent of the  retained  terms  for a location immediately  adjacent t o  the  
interface.  Com'biRations of aA1 and K1 were l imi ted   to   those  which would not 
y ie ld   too  low a number f o r   t h e i r  product so as t o  asvoid the  numerical 
diff icul t ies   previously  discussed.  It i s  t o  be  noted tha t   g rea t e r   i n s t ab i l i t y  
occurs  for lower aX1. This  i s  a s  it should  be  since a lower aX indicates  a 
more opaque inner  gas  vhich  approaches  classical  equil.ibrium  be !i avior.  

A higher  temperature  level  (reflected i n  K1) o f fe rs  less i n s t a b i l i t y  
because of t he   t r ans i t i on  toward  isothermal  equilibrium  behavior as we dis- 
cussed i n   t h e  last chapter. This i s  t r u e   f o r  a l l  K1 when K 2 / K 1  = 1 but it 
i s  not  without lbit when K2/K1 < 1. Figure 19 shows t h z t  , when aX1 = 
ax2 = 1 and $/K1 = 10-1 for   instance,   there  i s  again a de-stabil ization  as 
K1 exceeds  about 102. 

Because the   e f fec t  of the  "neuness" of the  plane of symmetry i s  super- 
imposed, as  previously  discussed, it was considered  sufficient  to limit ayl 
t o  one value  while  investigating  the  influence of t he  remaining  parameters. 
It can be seen from the   f i gu res   t ha t   t he   e f f ec t  of  varying K2/K1 i s  quali ta- 
t i v e l y  similar for the  four  different  sl ip  speeds  chosen. 

P r o f i l e   f u n c t i x .  - Figures 21 and 22 o f f e r  a typ ica l  comparison  of t he  
profile  functions  for  cases  with and without  base  flow  heat  transfer. The 
equations  governing  the  functlons  for the inner  gas  are  those of eqns. ( A b ) ,  
(A6)  and ( A 7 )  of the  Appendix. The equations  governing  the  functions  for 
the   ou ter  gas come from eqns. (140) where the profile  for  temperature must be 
altered by a fac tor  of ($/ICl)% in   order   to   reference it t o   t h e  symmetry plane 
base temperature of T The l a t t e r   p r o f i l e  i s  then governed by 01 e 
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In  general ,   the  observations made i n   t h e  last ckapter  regarding  the 
prof i le   func t ions   car ry   over   to   the   p resent   case .  The same arguments  apply 
t o   s l i p  at the   i n t e r f ace  and t h e  smaller temperature  fluctuations a t  t h e  
higher base  temperature levels. As before,   variation  of  the  parameters 
associated  with  thermal  radiation  carry a primary  influence upon the temper- 
a ture   f luc tua t ions  and a secondary influence upon the  pressure and veloci ty  
f luctuat ions.  

The major d i f fe rence   ex is t s  i n  the  influence  of  the base flow  temperature 
var ia t ion   ( re f lec ted  i n  K2/K1). A lower %/X1 leads to a greater  temperature 
f luc tua t ion   re la t ive  t o  pressure  f luctuatior.   bemuse of the function f i n  the  
terns -to t h e   r i g h t   i n  the  governing  eqn. (l71) A lower K*/Kl a l so  leads t o  
s teeper   per turba t ion   prof i les   ad jacent   to   the   in te r face   in  the  inner  gas,   that  
fo r  temperetu-re  being more pronounced than t h a t  f o r  veloci ty .  

-APPLICATION TO GASEOUS LWCLEPJI ROCKET 

111 this   chapter  we s h a l l  make an approximate  application  of  the above 
analysis  t o  +,he gaseous  nuclear  rocket problem  whicn  prorapted this   invest iga-  
t i o n .  At, present ,   there  Eppears t o  be no firmly  established  design  either 
i n  a aechanical or a theraal sense, but we shall derive approximations tc t h e  
appropriate pwameters based upon recent available repor t s .  

Kascak [ 131 suggests a fuel  core of approximately R = 3. .6 f t  . radius 
containing uran.i~m gas with  opacit ies  equivalent to R/AI = 103 or  higher.  
Mchffesty [22]  and Kascak suggest power levels which yield  approximately 
6 = lo8 Btu/hr-ft3 I h t ~ e  301 em? McLaffer-ty suggest t ha t   t he  i n l e t  temper- 
ature of t he  coolant gas is  approximately %- 5000'R efter regeneratively 
cooli.-r,g the nozzle. Based upon this  information w e  calculate  an approxi- 
mate centerline  temperatwe To. The cyl inbr ica l  frjrs equivalent to eqn. (159) 
is 

Subst i tut ion of the  above data yields approximately T = 64,000~~. "his c a l l s  
f ~ r  approximately K /K = 3.5 x 10-5. 0 

2 1 .  

?arks, Lane, Stewart  and  Peyton [ 2 7 ]  give  specific  heat  values  for 
gaseous wrsnixm such t h a t  y = 1 .4  approximately. Putre considers fuel t o  
propellant density  ratios  ranging from 1 . 0  t o  4.7. An in temedis te   va lue  
would y ie ld  a sound speed i n   t h e  fuel lower than   in   the   p rope l lan t .  As a 
compromise and t o   s a t i s f y  our assumption of al/a* = 1 i n  our perturbaticm 
analysis, we shall take a = 5000 fps .  Assuming BTL operating  pressure of 
100 a t m .  w i l l  yie ld  a radiation  parameter fo r  the  propel lant  a t  inlet of 
approximately E[ = 10-3 2 
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Kascak has  suggested  opacities  equivalent t o  R/A2 = 5 or higher   for  the 
propellant.  Putre has suggested a s l i p  speed on the order  of 100 fps.  We 
s h a l l  a r b i t r a r i l y  take f o r  oar purpose 125 fps  and  have as a consequence 
0 = 0.025. 

Rayleigh  Analysis 

The heat   t ransfer   per   uni t  area t o   t h e   s u r f a c e  of a cyl indrical  gas core 
generating  heat  uniformly i s  qw = &/2. Substi tuting t h i s  i n to  eqn. (154) w i l l  
y ie ld   an estimate of the i n i t i a l  temperature  sl ip from t h e  opaque surface of 
the  inner  gas to   the   coolan t  gas as 

= .34 

Using y1/A2 = 5 and ayl = 0.7 we f ind  from eqn. (153) 

E 

which indicates tha t  we can  consider  the  occurrence of a 
i n  t he  downstream direction  before  appreciable  radiation. 
opment in   the  outer   gas .  

few wavelengths 
boundmy layer  devel- 

A few remarks about t h i s  resu l t   a re   in   o rder .  Conceptual  designs of t h e  
rocket   indicate   re la t ively small chamber length  to   diameter   ra t ios .  ICaseak 
has suggested a length  of 6.0 ft. which y ie lds  a l e n g t h  t o  core  diameter  ratio 
of 3.75. This means tha t ,  i f  ayl = 0.7, only 2.62 waveler?gths ex is t  in the  
chamber. It is  the  whole objective of the  rocket  to  gain  substantial   enthalpy 
i n  the  propellant as it t raversas   the  chamber length. Then it would be 
desirable  to  consider  higher  coolant gas opacity  or slower speed,  both of 
which would y ie ld  e more subs tan t ia l   rad ia t ion  boundmy laxer development over 
a shorter chamber length  for  a given  ayl. On t h e  other hand, shorter wave- 
lengths may be  of  concern,  such as those more indicat ive of turbulence. In  
tha t   case ,   the  chamber would contain many more wavelengths m d  it would thus 
take many more wavelengths for development of the radiat ion boundary layer .  
Then, it i s  permissable t o  consider a uniform  outer gas temperature  for  our 
perturbation  analysis. 

We have already  observed  in  prior work that subsonic  disturbances t o  
the  vortex  sheet,   existing  for  subsonic  sl ip  speeds,  will tend  not t o  be 
influenced by a r e a l   o r   v i r t u a l  boundary exis t ing more than a few wavelengths 
away. We shall see  evidence of t h i s  f ac t  upon reviewing  the results of t he  
perturbation problem analysis  of the  next  section. 
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Perturbation  Problem  Results 

Figure 23 displays  the  behavior  of  the  complex  wave  speed c as a 
function  of  wave  number  for  fixed  values  of y, 0 ,  yl/A1, yl/Az, 5 and %/K1 
as  listed  on  the  figure,  considering a confined  inner  gas  and a semi-infinite 
outer gas. The  value of K2/Kl  selected  for  the  perturbation  analysis  was 
10-3 which  corresponds  to  an  approximate  centerline  temperature  of To = 
26,0OO0R.  This  was  done  in  an  attempt  to  avoid  the  necessity  of  using  an 
excessively  small  step  size  in  the  numerical  integration  in  the  inner  gas 
near  the  interface.  The  consequences  of  this  substitution  will  be  discussed 
later  in  this  section. 

For  smaller  wave  numbers,  the  virtual  boundary  of  the  symmetry  plane  in 
the  inner gas obviously  has  some  effect  upon  the  eigenvalue. As we would 
expect,  there  is a build  up of pressure  and  temperature  disturbances  in  the 
inner  gas  with  particularly  steep  profiles  adjacent  to  the  interface  because 
of  the  influence  of  the  function f in  the  governing  equations.  In  the  outer 
gas  there is decay  of  the  disturbances  to a vanishing  magnitude as they 
propagate  outward  from  the  vortex  sheet. A question  remains,  however,  as to 
the  direction of propagation  to  determine  the  number  of  wavelengths  in  the 
downstream  direction  before  substantial  decay  takes  place.  This  point is 
important  to  the  question of radiation  boundary  layer  growth.  From  eqns. (88) 
and (127) the  solution  in  the  semi-infinite  outer  gas  takes  the  form 

4 = (Ae'aay + Be -bay )e  ia(x - ct ) 

For  the  parameters  selected and a choice  of ayl = 0.7, the  numerics  yield 

a = 10.3 + 2.5i b = 1.0 + 0.00014i 

where a is  associated  with  the  modified  classicai  wave  and b is  associated  with 
the  radiation-induced  wave. 

while  the  associated  damping 

I d a  - e 
-10.3ay 

Then,  the  angle of propagation  of  these  is 

(dy/dxIb = l/bi = 7000 

in  the  y-direction  is 

Thus,  the  damping  is  quite  substantial  in  the  x-direction. 

Realistically,  we  realize  that  the  outer  gas  in  the  rocket is not 
unconfined.  In  fact,  it  is  expected  that  the  dimension  of  the  outer  gas  would 
be  of  the  same  order as that  of  the  inner gas. "hen,  the  question  remains as  
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t o  the influence  of  an  outer boundary. Figure 23 displays  the  behavior of 
our  eigenvalue upon placing a w a l l ,  where v$ and qh vanish, at a distance 
from the  interface  equal  to  the  half-width of the  core ges. This a l t e r s   t h e  
form of the   so lu t ion   in  the  outer   gas   to  one similar t o  that of  the  inner  gas 
but w i t h  uniform base temperature. For t h e  longer  wavelengths t h i s  has a 
slightly  de-stabil izing  influence rather than s t a b i l i z i n g  as with one  boundary. 
This i s  due t o   t h e   f a c t  that  disturbances  generated at the vortex  sheet and 
propagated  outward in   both  direct ions  tend  to   cancel  each other   af ter   being 
re f lec ted  back to   the   in te r face ,   thus   des t roying  the s tabi l iz ing  inf luence 
of a single  boundary. This is  more clearly  seen from the   p lo t s  on t h i s  f igure 
of  the  eigenvalue  behavior of purely  isentropic  gases  with l i k e  properties.  

Comparison of the   i sen t ropic   cases   to   the  radiating cases shows tha t  t he  
lat ter a re   l ess   uns tab le ,   exhib i t ing   the   fac t  t h a t  rad ia t ive   t ransfer  between 
the  gases does  have a s tabl l iz ing  inf luence.  

Figure 23 shows tha t ,  as w e  move t o   s h o r t e r  wavelengths, the  eigenvalue 
approaches a fixed  asymptotic  value,  independent of t he  wave number. This 
means, of  comse, t h a t  the  boundaries no longer  influence  the  vortex  sheet, 
instabil i ty,   the  eigenfunctions  decaying to very small magnitudes  before 
encountering  the  boundaries. 

A check was made of the  transparent  terms  neglected i n  our opaque inner 
gas  perturbation  analysis. For our perticular  choice of K2/K1 it was found 
t h a t  the  neglected terms were on t h e  same order  of  magnitude as the   re ta ined 
terms immediately  adjacent t o   t he   i n t e r f ace .  A value of I$/% = 3.5 x 10-5 
would have  exceeded applicability  of  our  assumption and we would be forced t o  
consider   the  effect  of t he  transparent boundary layer   adjacent   to   the  inter-  
face.  "hen,  of  course, it would not be permissible t o  consider  the  outer gas 
as receiving  radiation  purely from an opaque inner gas wall. 

As we have  mentioned before, it was not  necessary t o  assume t h a t  we were 
dealing with an opaque gas i n  order  to  drop the f i rs t  term  of  the  radiative 
t r ans fe r  eqn. (26) in   the  base flow. The loss of t h i s  term was purely a 
consequence of t he   f ac t  t h a t  the  source  term was taken as uniform  &cross  the 
gas. * The r e s u l t  i s  t h a t  t he  Planck  function &//s i s  parabolically 
dis t r ibuted.  It would l ikewise  be  true that the  first term of eqn. (26) could 
be  dropped i n  t h e  opaque assumption,  regardless of the   d i s t r ibu t ion  of the 
source  functlon, so that  the   rad ia t ive   t ransfer  becomes a diff'usion  process. 
Given a high  magnitude  of  source  function, however, the temperature distri- 
bution becomes par t icu lar ly   s teep  and the  short  photon path  diffusion  process 
no longer  applies. Kascak based h i s  heat   t ransfer   analysis   for   the  base  f low 
i n  the  inner  gas upon the  diffusion  approximation,  arguing tha t  t he  gas is  
qui te  opaque. H i s  analysis  would appear t o  be in   e r ro r ,  however, because  he 
considers non-uniform source  distributions and power l eve l s  which give r ise 
t o  such a steeply  varying  Planck  function  distribution that he  exceeds the 

* The uniform  source  problem was considered by Heaslet and Warming [12]. 
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diffusion  approximation. To be correct,   then,  he  should  consider  the  effect  
of  keeping  the first term of  eqn. (26). 

Our choice cf a higher K2/K1 corresponds t o  a low2r 6 so that  t he  Planck 
funct ion  dis t r ibut ion is  not  so s teep as t o  exceed the difmsion  approximation, 
the latter being  of  importance i n  OUT perturbation  analysis even  though may 
be uniform. A lower K2/K1 would o f f e r  a more steeply  varying  function f which 
would lead to  an  increased  s tabi l izat ion  effect .  However, because  the  trans- 
Ferent boundary layer   ad jacent   to   the   in te r face  would then  have t o  be included 
i n  our perturbation  analysis,  t h i s  increased  s tabi l izat ion  effect  would not  be 
expected t o  be very  appreciable. 

Related Ekperiment s 

Two experiments which appear t o  be somewhat re la ted  t o  the  present work 
are reported by Ragsdale and Lanzo [31]. One of these was c u r i e d   o u t   t o  
determine  the  effect   of   inlet   veloci ty   prof i les  and turbulence  levels  upon t h e  
mixing of coaxial  streams of air ,  at normal temperatures,  in a rocket-like 
chamber such as that  sketched i n  Figure 1. The inner stream, colored  with 
iodine,  i s  ingected a t  low speed p a r a l l e l   t o  t he  high  speed  outer stream. In  
one caseg   v i sua l   sbsemat ion  showed t h a t  a la rge   sca le  mixing effect   took 
place  with a downstream rec i rcu la t ion  of the  propel lant   into the  core  region. 
A foemy, porous material, was then  introduced  across   the  inlet   to   break up t h e  
large  scale   turbulence and provide a more uniform,  laminar-like f low at i n l e t .  
In  t h i s  case   the   rec i rcu la t ion  no Longer existed and the mixing seemed t o  be 
confined t o  a r e l a t ive ly   t h in   l aye r  between t h e  streams. 

The second  experiment  involved the  coaxial  Plow of  argon  (slow moving 
inner  gas) and air (faster moving outer   gas)  where the  argon was inductively 
heated  in a plasma s t a t e  by coupling t o  a high  frequency  alternating  current 
f ie ld ,  t h e   l a t t e r   c r e a t e d  by passing a current  through a copper coil embedded 
i n  t h e  outer wall. No care  was talcen t o  provide a laminar-l ike  inlet  so t h a t  
large  scale  turbulence was probably introduced. Argon concentrat ion  prof i les  
were measured across t h e  cyl indrical   cavi ty   before  and after the  argon was 
heated.  Extremely  high  concentrations  of air were i n  evidence i n   t h e   c e n t r a l  
port ion  for  t he  cold  flow  but  mixing was retarded when the  argon was heated. 
This  implies  that  the  heated  inner  gas ( w i t h  a presumed thermal r a d i a t i o n   t o  
t h e  outer  gas)  suppresses the  turbulence and reduces  the  mixing. 

If the  lrcminar-like in l e t   o f  the  f i rs t  experiment had been  provided fo r  
the second  experiment,  turbulence would have t o  be confined t o  that  generated 
at the  gas   interface and a bet ter   analogy  to   the  present  work could be drawn. 
It i s  expected, howeverg t h a t  the vortex sheet w i l l  be unstable and turbulence 
w i l l  be generated  but,   in view  of the  experimental results, it w i l l  be 
diminished t o  an extent   in  the presence  of thermal radiat ion.  This implies 
t h a t  the  amplification  of  the  disturbance i s  reduced,  an  effect which the  
present   l inear   per turbat ion  theory  predicts .  
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CONCLUSION 

It  is  known  that  thermal  radiation  is a thermodynamic  non-equilibrium 
process  that  acts  to  damp  acoustic  disturbances  as  they  propagate  in a gas. 
It  is  shown  in  the  present  work  that  standing,  undamped  one-dimensional  waves 
can  propagate  back  and  forth  between  fixed  boundaries  when  the  gas  is  either 
completely  cold  or  infinitely  hot,  in  the  former  case  traveling  at  the 
isentropic  speed  of  sound  and  in  the  latter  case  traveling  at  the  isothermal 
speed  of  sound.  Maximum  damping  is  incurred  when  the  gas  is  in a state  of 
maximum  non-equilibrium,  which  occurs  at  an  intermediate  temperature  depending 
upon  the  opacity  of  the  gas,  Density  dependent  heat  generation  introduced 
into  the  perturbations  of  the  gas  has  an  amplification  effect  upon  the 
standing  waves. 

Previous  investigators  have  shown  the  plane  vortex  sheet  seTarating  semi- 
infinite  isentropic  gases  to  be  unstable to small disturbances  except  when  the 
slip  speed  across  the  sheet  exceeds a certain  supersonic  value.  For  equal 
specific  heat  ratios  an6  sound  speeds  in  the  gases  the  sheet  becomes  neutrally 
stable  for  slip  speeds  in  excess  of 2& times  the  isentropic  speed of sound. 
The  present  study  shows  that  this  criterion also applies  to  the  isothermal 
equilibrium  state  if  the  isentropic  sound  speed  is  replaced  by  the  isothermal 
sound speed.  In  addition,  it  is  shown  that  the  amplification  factor  is  some- 
what  less  at  the  isothermal  1i.mit  for a given  unstable s l i p  speed,  the  effect 
being  smaller  for  smaller  speeds.  Uniformly  increasing  the  temperature  level 
from  the  isentropic  limit  to  the  isothermal  limit  in  the  gases  gives  rise to 
a monotonic  decrease  in  amplification  factor  for  all  subsonic  disturbances 
while,  for  supersonic  disturbances,  the  amplification  factor  increases and 
then  decreases. Thus, thermal  radiation  in  the  perturbations  has a de-stabil- 
izing  influence  upon  otherwise  neutrally stable disturbances. 

h-ior work has  shown  that  the  introciuction of 8 virtual boundasy near 
the  vortex  sheet  in  isentropic  flow  stabilizes  it  for  slip  speeds  less  than 
2fi times  the  sound  speed  but  de-stabilizes  it fez- slip  speeds  greater  than 
2fi times  the  sound  speed. The present  work  demonstrates  that  these  observa- 
tions  carry  over  to  the  isothermal  limit.  In  the  transitional non-equilibrium 
region  the  presence of the  boundary  appears to give  rise  to  more of a monotonic 
decrease in the  smpllfication fartor with  lesser  variation  between  the 
isentropic and isothermal  limits. 

Introducing  uniform  heat  generation  into a confined  inner  gas  gives  rise 
to a parabolic  distribution of temperature to the  fourth  power  in  the  gas, 
implying a transfer  of  heat  from  the  inner  gas,  across  the  vortex  sheet  to 
the  outer  gas  in  the  base  flow.  The  present  investigation  indicates  that  this 
variation  in  base  temperature  is  somewhat  stabilizing (lesser amplification 
factor) to s m a l l  disturbances  of  the  vortex  sheet  at  all  slip  speeds.  There- 
fore, it  agpecrs  that  radiative  non-equilibrium  in  the  base  flow  has a stabil- 
izing  influence.  Introducing  heat  generation  in  the  perturbations  in  the  inner 
gas  in  proportion to perturbed  density,  consistent  with  the  base  flow  heat 
generation  which  gives  rise  to  the  base  temperature  variation,  appears to have 
no  discernible  effect  upon  the  stability  question. 
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An approximate application of  the present  analysfs was made to a coaxial 
flow gaseous  nuclear  rocket. "he result  exhibited  that the vortex  sheet 
between the slow moving core gas and the faster noving propellant gas is 
unstable t o  s m e l l  disturbances  but with a lesser amplification factor than  
that which befits :.sentropic gases. 
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APPENDIX 

The solution  of eqn. (171) f o r  a radiating gas with non-uniform base 
temperature  can be accomplished by numerical  integration. This integrat ion 
becomes part   of an overall   numerical   i teration  procedure  for  the  proper 
value  of  the complex wave speed. 

If we define 

h l h )  = f 5 

and l e t  p,  q and r be  the f irst ,  second and t h i r d  derivatives,   respectively,  
of the function 01, we  may replace eqn. (171) wi th  four first order  ordinary 
d i f fe ren t ia l   equa t ions   in  the  form 

0; = p P' = 9 q '  = r 

(A31 

where ( ) '  denotes  differentiation with respect t o  n. The n-direction mode 
functions from eqns. (172)-(178) may be wri t ten as 
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Eqns. (A3) may be  forward  integrated  by a Runge-Kutta  method  (see,  for 
instance,  Conte [5]) if  we  have  starting  values  for @1(0), p(O), q(0) and r(0). 
The  boundary  conditions of vanishing  normal  velocity  component  and  heat  flux 
due  to  symmetry  at 17 = 0 lead  to  the  conditions p(0) = r(0) = 0 from  eqns. 
(Al), (A6) and ( A l O )  where (f4)'(O) = (f5)'(0) = 0 from  eqn. (147) .  We  must 
yet  provide  starting  values  for @1(0) and q(0).  We  may  accomplish  this  by 
performing our integration  twice,  arbitrarily  setting Ql(0) = 0 and  q(0) # 0 
in  one  problem,  then  reversing  these  assignments  in  the  second  problem,  and 
finally  providing  the  solution  as a linear  combination  of  the  two.  This  is 
permissable, of  course,  only by virtue of  the  fact  that our perturbation 
equations  are  linear. 

Thus,  the  starting  values  for  problem =may be  taken  as 

with  the  Runge-Kutta  integration  being  performed  upon  eqns. (A3). The  result 
will  be  numerical  values  of Q,(ayl),  pa(ayl),  qa(ayl)  and  ra(aY1)* The  start- 
ing  values  of  problem bmay be  assigned  as 

allowing  numerical  results  for  Qb(ayl),  pb(ayl),  qb(ayl)  and  rb(ayl) - 
solution  integration  constants,  considering  that  the  eigenvalue c' is an unknown. 
Thus, our linear  combination  may  take  the  form 

In an eigenvalue  problem  we  have  the  freedom  to  arbitrarily  set  one  of  the 
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r = r + Crb a 

In  the  case  of a radiating  outer  gas  the  solution  to  the  perturbation 
potential  function  is  given  in  eqn. (127) where  finiteness  at n -f has  been 
applied,  leaving  two  unknown  coefficients.  The  boundary  conditions  applied 
at  the  interface  between  the  gases  are  taken  as  the  usual  matching  of 
pressure,  normal  velocity  component,  integrated  intensity  and  heat  flux. 
Utilizing  eqns. (871, (941, (1131, (115), (1181, (1191, (Ab),  (A6),  (A9)  and 
( A l O ) ,  these  may  be  written  for  the  present case as 

Substitution  from  eqns. (127) and (Al.3) into  eqns. (Alh)-(Al7) will  result 
in  four  equations  in  the  four  unknowns B2, D2, C and  the  eigenvalue E .  

The  interation  procedure  starts  by  making  two  guesses  of  the  eigenvalue c' 
for a given  set  of  parameters y ,  ay1, 0, aX1,  aX2,  Kl  and  K2.  For  each  guess 
the  Runge-Kutta  numerical  integration  through  the  inner  gas  is  performed, 
utilizing  eqns.  (Al)-(A3), (All) and ( A l 2 ) ,  to arrive  at @a and @b and  their 
derivatives  at TI = ay1.  Then,  the  two  complex  exponential  solutions  of  eqn. 
(127 ) and  their  derivatives  at n = ay1  are  calculated  while  using  eqns . (120)- 
(124). Upon  substituting  into  the  three  eqns. (Al.4)-(~6) we  may  eliminate 
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B2, D2 and C. Eqn. (Al7) may then  be  used  for  l inear  extrapolation  to a new 
estimate of c'. The process i s  repeated  unt i l  eqn. (Al7) i s  sa t i s f ied   wi th in  
an established convergence c r i t e r ion ,  whereupon the last estimate  of  the 
eigenvalue i s  considered  the  correct  value. 

Once the  correct  value  of  the complex wave speed c' i s  found by the  above 
procedure,  the Runge-Kutta integration  process may be repeated w i t h  the  
s tar t ing  values  . 

in   order   to   provide  the  prof i le   funct ions  for  
functions  for t he  outer  gas  can be calculated 
fo r  Q and i t s  derivatives.  2 

the  inne r  gas. The p ro f i l e  
by subs t i tu t ion   in to  eqn. (127) 
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F igure  1. Schematic  of c o a x i a l  flow rocket  chamber.  
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F i g u r e  2. N e u t r a l   s t a b i l i t y   c u r v e   f o r  1-D r a d i a t i n g   a n d   h e a t  
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Figure  3 .  Complex e i g e n v a l u e   f o r   s i n g l e  1-D r ad ia t ing   and   hea t   gene ra t ive   gas  with y = 1.4 
conf ined   be tween   r i g id   ad iaba t i c  walls. 
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Gas 2 

Figure 5. Schematic of disturbed 2-D vortex  sheet  separating  semi-infinite  gases. 
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Figure 6 .  Complex eigenvalue f o r  d i s turbed  2-D vor tex   shee t   separa t ing   semi- inf in i te  
i s e n t r o p i c   o r   i s o t h e r m a l  gases with y 1  = y2 = 1 . 4  and al = a*. 
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Figure  7 .  Complex e i g e n v a l u e   f o r   d i s t u r b e d  2-D v o r t e x   s h e e t   b e t w e e n   s e m i - i n f i n i t e   r a d i a t i n g   g a s e s  
and  near  symmetry  plane f o r  y1 = y2 = 1 . 4 ,  a l  = a2 and U = 0.5.  
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Figure 8. Complex e igenva lue   fo r   d i s tu rbed  2-D vor tex   shee t   be tween  semi- inf in i te   rad ia t ing  
gases  and  near symmetry p l a n e   f o r  y l  = y2 = 1.4, al = a2, a h l  = a h ,  = 1.0 and = 1.5. 



- 
C 
1: 

i 
Semi- inf in i te   gases  - c - "  

ay, = 0.5 

"" 
\ 
\ 

" 4 ""- 
" " - -  "" 

"" """"""" """" 

I I I 
10- 100 10 102 10 3 

K 

Figure  9 .  Complex e i g e n v a l u e   f o r   d i s t u r b e d  2-D vo r t ex   shee t   be tween   s emi - in f in i t e   r ad ia t ing  
gases  and n e a r  symmetry plane f o r  y 1  = y2  = 1 . 4 ,  a1 = a a h ,  = ah,  = 1.0 and = 2.2.  2' 
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Figure 10. Complex e igenva lue   fo r   d i s tu rbed  2-D vor tex   shee t   be tween  semi- inf in i te   rad ia t ing  
gases  and  near symmetry plane f o r  y 1  = y2  = 1 . 4 ,  a l  = a2  and 5 = 2.5. 
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Figure  11. Complex e i g e n v a l u e   f o r   d i s t u r b e d  2-D vor t ex   shee t   be tween   s emi - in f in i t e   r ad ia t ing  
gases   and   near   symmetry   p lane   for  y = y2 = 1 . 4 ,  a = a2, ahl  = ah2 = 1.0 and 5 = 3.0. 1 1 
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F igu re   12 .   Schemat i c  of  d i s t u r b e d  2-D v o r t e x   s h e e t   n e a r   s y m e t r y   p l a n e .  
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F i g u r e  1 3 .  D i s t u r b a n c e   p r o f i l e s   f o r   r a d i a t i n g   g a s e s   s e p a r a t e d   b y   d i s t u r b e d  2-D v o r t e x  sheet 
n e a r   s y m m e t r y   p l a n e   f o r  y1 = y2 = 1 .4 ,  a l  = a2, ayl  = 0.5,  ax, = ax, = 1.0, = 0.5 
and K = 0.5. 
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F i g u r e   1 4 .   D i s t u r b a n c e   p r o f i l e s   f o r   r a d i a t i n g   g a s e s   s e p a r a t e d  by d i s t u r b e d  2-D v o r t e x   s h e e t  
n e a r  symmetry p l a n e   f o r  y = y2  = 1 . 4 ,  al  = a2, ay l  = 0.5, ahl = aX2 = 1 . 0 ,  'U = 0.5 
and K = 50.0. 1 



1 

.5  

0 

-.5 

-1 
0 .25 .5 .75 1.0 1 .25   1 .5  

rl = ay 

Figure  15. D i s t u r b a n c e   p r o f i l e s   f o r   r a d i a t i n g   g a s e s   s e p a r a t e d  by d i s t u r b e d  2-D v o r t e x   s h e e t  
n e a r  symmetry p l a n e   f o r  y = y2 = 1 . 4 ,  al = a2, ayl  = 0.5 ,  aX = ah,  = 1.0, u = 2.5 
and K = 0.5.  1 1 
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Figure  1 7 .  Complex e i g e n v a l u e   f o r   d i s t u r b e d  2-D v o r t e x   s h e e t   n e a r  symmetry p l a n e   i n   r a d i a t i n g   g a s e s  
w i t h   b a s e   f l a w   h e a t   t r a n s f e r   f o r  y1 = y2 = 1 . 4 ,  al  = a2,  ay, = 0.5, a h 2  = 1.0 and  
U = 0.5. 
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Figure 18. Complex e i g e n v a l u e   f o r   d i s t u r b e d  2-D vo r t ex   shee t   nea r  symmetry p l a n e   i n   r a d i a t i n g   g a s e s  
wi th   base   f l aw   hea t   t r ans fe r   fo r  y1 = y, = 1 . 4 ,  al = a,, ayl = 0.5, ahl = 0.01, 
ah,  = 1.0 and = 1.5. 
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Figure  19 .  Complex e i g e n v a l u e   f o r   d i s t u r b e d  2-D v o r t e x   s h e e t   n e a r  symmetry p l a n e   i n   r a d i a t i n g  
gases   w i th   base  flow h e a t   t r a n s f e r   f o r  y 1  = y2 = 1 . 4 ,  al = a2, ayl  = 0.5,  ax, = 1.0 
and ii = 2.5. 
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Figure 20. Complex e igenva lue   fo r   d i s tu rbed  2-D vor t ex   shee t   nea r  symmetry p l a n e   i n   r a d i a t i n g  
gases   wi th   base  flaw h e a t   t r a n s f e r   f o r  y1 = y2 = 1 .4 ,  al = a ayl = 0.5, axl = 0.01, 
ah2 = 1.0  and v = 3.0. 2 '  
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Figure  21 .  D i s t u r b a n c e   p r o f i l e s   f o r   r a d i a t i n g   g a s e s   s e p a r a t e d  by d i s t u r b e d  2-D v o r t e x   s h e e t   n e a r  
symmetry p l a n e   w i t h   b a s e   f l a w   h e a t   t r a n s f e r  f o r  y1 = y2 = 1 . 4 ,  a1 = a2,  ay l  = 0.5,  
ah l  = 0.01, ah,  = 1.0, = 0.5, K1 = 0.5 and K2/K1  = 1.0.  
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Figure 22. D i s tu rbance   p ro f i l e s   fo r   r ad ia t ing   gases   s epa ra t ed   by   d i s tu rbed  2-D vor t ex  sheet near 
symmetry p lane   wi th   base  flow h e a t   t r a n s f e r   f o r  y1 = y2 = 1 . 4 ,  a = a2, ayl = 0.5, 
axl = 0.01, ax, = 1 . 0 ,  U = 0.5,  K1 = 0.5  and K2/'K1 = 0.1. 
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F igure  23. Comparison  of  complex  eigenvalues  for  disturbed 2-D vor tex   shee t   be tween  conf ined  
i s e n t r o p i c   g a s e s  zmd gases   with  radiat ion  parameters   approximating  gaseous  nuclear  
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